

What is CoRoT?

A space mission built and operated by CNES (France) with ESA, Austria, Belgium, Brazil, Germany and Spain

Stellar ultra high precision relative photometry

2 major Scientific Programmes

Same technical specifications

- * Very high accuracy (1000 times better)
- * Very long duration of observation of the same star ~150 days
- * Very high duty cycle (> 90 %)

Detect small planets through their transit

The mission profile

Polar orbit at 896 km

Intermediate size mission

160 M\$

600 kg

The CoRoT focal plane

Camera with 4 detectors

114 bright stars (+40) 110 000 faint ones (+40 000)

10 bright stars V : 5.5 to 9.5 at 32s

March 8 2009

12 000 Faint stars R: 10 to 16 At 32 or 512 s

The seismology targets

114 up to now + exofield....

Analysis of the light curves in the Fourier space

Detection of solar like oscillations in Solar analogs

Spherical harmonics n, I, m Comb structure n ~15 à 30 Around 1 to 3 mHz

Large separation Δv small separation δv

The double comb structure And the « echelle diagram »

Michel et al. Science 2008 Benomar et al. A&A 506, 2009

In Cooler solar analogs

HD 52265
metal rich G0V star
Hosting a planet
Ballot et al. A&A submitted

HD 43587, F9V, just observed now!

HD 46375, K0V, hosting a 3days planet $\Delta v \sim 135 \,\mu\text{Hz}$ (Gaulme et al, A&A accepted))

Off the MS

Large amplitudes
Brighter than the Sun
Vconv higher
Same T

Life time of the modes higher

I=1 associated to a mixed mode I=2

Deheuvels et al. A1A accepted

6000

A stellar cycle?

HD 49933, F5V, 1.2 Mo, Rotation period 3.4 days

Observed twice for 400 days, Modulation of around 120 days

Garcia et al., Science accepted

Solar like oscillations in a Red Giant

Teff= 4750 K, L= 70 Lo Very slow rotator

At very low frequency: $\sim 30 \mu Hz$

Detection of the comb structure

14.7 days

Carrier et al. A&A, 506 2009

A new Stellar Formation Rate indicator

Non uniform, unimodal distribution

Compared to models of synthetic populations

101113062

70 80 90

50 60

Frequency (µHz)

De Ridder et al. Nature 2009, Miglio et al. A&A 2010, Mosser et al. A&A submitted

AAS Miami May 2010

Hot stars and solar like oscillations

B1 V Teff ~ 10 000

0 8.5 V Teff= 35 000

NGC 2244 Rosetta nebula 1,6 Myr

Gravity modes?

Auto excited Beta ceph

Solar like P modes

Deep interior, He ionisation zone, convective region

Belkacem et al., Science, 2009

Red 30 Mo Green 34 Mo

Degroote et al.A&A submitted

The Beta Cephei instability strip?

67 Frequencies

(1c/d= 11.6 μHz)

The best model (seriously improved by seismology)

But these modes are not excited!!!

-->> Revision of the physics of the models....

Briquet et al. A&A 2010 accepted

A Be star with a burst

HD 49330 156 days V= 8.5

Enveloppe / pulsation Interaction ?

Huat et al. A&A 506,2009, Floquet et al. A&A 2010

An old hot B subdwarf

Very faint, (V=14.9) observed in the exoplanet field

24 frequencies (6 from the ground) g modes

Charpinet et al. A&A L, submitted

Rotation distribution of young stars

11275, FGK dwarfs

3000 confirmed periods

Age from gyrochronology P < 20days

Not compatible with a constant star formation rate Excess of young stars (also seen in Xrays)

Affer et al. A&A 506, 2009

The Sun in time

Extended program of spectroscopic observations
To obtain the Fundamental parameters

Dias de Nascimento eta., submitted

Spot modeling of an F5V star

P rot: 3.35 days

Spot life time: 2.5 to 3.5 days

Surface of the spots 3%

Inclination 55°

Lifetime of spots, rotation and activity index

 $\tau \sim P^2$?

The CoRoT exoplanet programme

From light curves to complete planet characterisation.....

A long way to go......

10 000 targets

300 candidates

50 selected for FU obs

2 to 4 planets!

Hot jupiters around very active stars

CoRoT - 2

81 transits Successifs; Periode: 1.742996 j; Rayon: 1.465 R

Masse: 3.31 M_J; Rotation de l'étoile 4.5 j

CoRoT - 6

15 transits Successifs; Periode: 8.88 j; Rayon: 1.5 R

Masse: 3.3 M_J; Rotation de l'étoile 6 j

Between stars and planets

CoRoT-3b

34 transits
Periode 4.26 j
Rayon: 1.01
Masse: 21.66

Rotation de l'étoile ~ 4 j

A temperate gaseous planet

CoRoT-9

1.5 transit + WISE Photometry+ Harps coralie spectroscopy...

Period 95 .27 days (145 days of observations)

Transit duration 8.8 hours

Eccentricity 0.11

G3V, not active, 0.9 Ms,

Rp= 1.1 Rjup, Mp= 0.84 Mj, Tsurf= 350K, H+ He+ 20mE rocks

The smallest one

CoRoT-7b

~ 170 transits Period: 0.85 j P rot: 23 j R= 1.7 Rearth

Stellar activity and planet confirmation

CoRoT-7b A nightmare!

110 nights with HARPS:

Strong noise due to stellar activity......
Spot modeling confirms

0.85 days period exists, amplitude: 5m/s $$\text{M= 4.5 M}_{\oplus}$$

Density ~ 5 Silicates + water ?

second périodicité: 3.7 days, hot Neptune M= 9M_⊕

Conclusion....?????????

1- Stars can be better understood
Looking carefully at their time dependant properties

* Seismology techniques

* Non coherent behaviors

They are very diverse, more complex than the Sun, and more complex than we thought

Models have to be revised and improved

2- Planetary systems are also very diverse
Transit observations, complemented by spectroscopy
-->> some insight on their physics (density)
Models have to be revised and improved

The major difficulty for the detection of small planets ls the stellar variability

3- Stars and planetary systems have to be studied together

