

Corot Calibration

OUTLINE

- Orbital Environment
 - Radiation Flux
 - Thermal Effects (on analogical components)
- Readout Electronics
 - Offset Level
 - Readout Noise
 - Electronics' Gain
- CCDs
 - PRNU
 - Dark current
 - Bright pixels

Radiation Flux

Objectives:

- Measure the radiation flux seen by the CCD detectors behind shielding (10mm Al)
- Define SAA frontiers for the triggering of specific onboard software services (outlier rejection)
- Characterize energy and size of particle impacts (statistical distributions)

Radiation Flux

- 24hs of data acquisition [50x50]
 - Different acquisition conditions according to satellite position

Radiation Flux and Orbital data

SAA frontiers (at 300p+/cm2/s)

Energy per impact (e-)

Disturbed pixels per impact

Readout electronics

Objectives:

- Electronic Offset (sensitivities)
- Readout noise
- Chain gain (e-/ADU)

Electronic Offset

- Offset level imposed to assure proper A/D conversion
- Measured at emptied CCD output registers
- Superposed effects:
 - Thermal sensitivities
 - Crosstalk
 - Readout noise
 - Power supply (?)
 - etc..

(Some) Relevant Temperatures

Offset Astero

Electronic Offset

- Thermal sensitivities:
 - CCD, BCC, BEP, ...
 - 0.5 to 2 ADU/C, depending on the chain
- Negative steps
 - Sunlight->Shadow->Sunlight transitions
 - Only for chain 1 by now (to be followed)
- 2nd order correction of photometric data TBD

Readout noise

Readout Noise (ADU)

	CCD A1		CCD A2		
	left	right	left	right	
In-Flight	4.34	4.26	4.25	4.36	
Ground (VT)	5.5	5.4	5.5	5.3	

	CCD E1		CCD E2	
	left	right	left	right
In-Flight	3.83	3.69	3.79	3.72
Ground (VT)	4.6	4.6	4.5	4.5

(Note: slightly different evaluation methods)

Electronics' Gain

- Gain of complete electronic chains
 - (CCD outputs -> readout electronics -> A/D converter)
- Evaluation principle (very simplified):

- Evaluated on a series of flashed images (after pre-processing)
 - Some data were rejected due to scattered light

Electronics' Gain

Electronics' Gain

Estimated values (e-/ADU)

	CCD A1		CCD A2		precision
	left	right	left	right	
In-Flight	2.04	2.05	1.99	1.99	(+- 0.01)
Ground (VT)	2.1	2.1	2.0	2.0	(+- 0.1)

	CCD E1		CCD E2		precision
	left	right	left	right	
In-Flight	2.06	2.05	2.15	2.14	(+- 0.04)
Ground (VT)	2.1	2.1	2.2	2.1	(+- 0.1)

(precision derived from statistical uncertainties)

Crosstalk

Electromagnetic interferences

- 2 different cycles exist on the same electronic
 - Astero CCD are digitalised once per second
 - Exo CCD are digitalised once per 32 seconds

=> Digitalisations on ASTERO and EXO channels are not synchronous. When the electronic digitalise a pixels, it can be sensitive to what occur on the other CCDs.

- Some sequences on CCD produce important perturbations on the electronic For exemple :
 - A line transfert on an EXO CCD lasts 250 µs
 - During this time, 25 pixels are digitelised on the ASTERO CCD (10µs per pixels)
 - Due to the EMI, an offset will be add to these 25 pixels :

Objectives

 Caracterise the crosstalk for each sequences

Crosstalk

• Correction of an image on Exoplanet channel

Before correction

After correction

Correction is not perfect

Caracterisation of CCDs

Objectives

- Dark field
- Bright pixels map
- Pixel response non-uniformity
- Black pixels map

Dark field

13/02/2007

 \sim 2400 pixels > 300 e-/exp. (January 2nd = d+6)

(January $15^{th} = d+19$)

Evolution of dark pixels

- Rate of bright pixel generation
 - 15000 pixels per month > 300 e-/exp.
 - 3200 pixels per month > 1000 e-/exp.
 - 30 pixels per month > 10000 e-/exp.

Consequences of bright pixels

- What is the limit of bright pixels for science?
 - The exoplanet field is more sensitive
 - According to the specification :
 - For a star with mV=15.5 => noise must be lower than 700ppm over 1h
 - Considering a poissonian behavior of these bright pixels
 - And with mean background of 15 e-/pix/s and readout noise of 10 e-/pix
 - ⇒ The limit is 15 000 e- due to bright pixels in the mask. It is equivalent to a background increase of 6 e-/pix/s
- Bright pixels compared to the photon noise

300 e-/exp. ~ 8% of photon noise (30000 pixels today, 450000 in 2.5 year) 1000 e-/exp. ~ 15% of photon noise (6400 pixels today, 96000 in 2.5 year) 10000 e-/exp. ~ 50% of photon noise (60 pixels today, 900 in 2.5 year)

- 1/10th of the CCD surface covered by the 6000 masks of EXO channel
 - => At the end of the mission: 5 pixels greater than 300 e-/pix/exp. in each mask

Pixel response non uniformity

- Flat field with 3 colors + one with sun light over the south pole flyby
- Results
 - local PRNU about 0.6 % conform to ground based measurement

~10 black pixels / CCD + 2 columns on A2 (same as we measure on

ground)

Calibration summary

		Done	Open
SP1	Offset thermal sensitivity	V	
	Readout noise	V	
	Offset dependance		0
	Dark current	V	
SP2	Map of radiation flux	V	
SP3	Gain	V	
SP4	Map of bright pixels	V	
	Dark field	V	
	Flat field led	V	
	Map of black pixels	V	
SP5	Crosstalk calibration		0

Evolution of background on the orbit

PSO : Position on Orbit $90^{\circ} => \text{ north pole}$ $270^{\circ} => \text{ south pole}$

3 orbits on the edge of Corot eye

=> 0.5 e- from north pole to south pole essentially due to earth stray light

During the initial run

=> 0.3 e- from sunny side to shadow side

Moving objects

Moving objects

Objects passing through astero windows

Full window astero

Date: 2007-01-17T22:57:20.000 win_id=45 A2

2007-01-17T21:32:07.000 win_id = 47 A1

Point Spread Functions

- Astero PSF reconstruction based on:
 - A set of star images (35x35)
 - The satellite attitude (x,y projection)
- Justification:
 - Optimization of photometric apertures
 - Satellite jitter correction (edge effects)
 - Fitting photometry

- PSF -> motion blur -> CCD undersampling
- Inverse problem solved by an iterative algorithm
 - including reconstruction of sub-pixel structures

Point Spread Functions

PSF Reconstruction

Reconstructed PSF (slices)

PSF fitting

Recentre-and-average

