Exoplanet program: status

Run reports papers

LRa01 run report : Carone et al., submitted SRc01 run report : Erikson et al. submitted

In short:

- "recommends publication after substantial revision"
- main criticism of referee focus on
 - 1) the purpose of this type of paper
 - 2) why we publish CoRoT results on a field-by-field basis.

Still in the pipe:

- LRc02 : Bordé et al.
- SRa01/SRa02 : Weingrill et al.
- LRa02 : Alonso et al.
- LRa03/SRa03 : Cavarroc et al.

Exoplanet program: status

Exoplanet program: new planets

16 to 21: Jupiter-type planets

CoRoT-16b: Ollivier et al

CoRoT-17b: Scizmadia et al. Accepted in A&A

CoRoT-18b: Hébrard et al.

CoRoT-19b: Guenther et al.

CoRoT-20b: Deleuil et al.

CoRoT-21b: Patzold et al.

Planets properties

Planets properties : spin - orbit alignment

Still under investigations

A second planet in the CoRoT-16 system?

Radial velocity measurements still under analysis.

Planet or not planet?

COI-0591 or CoRoT-22 a super-Neptune?

Blend analysis is being performed based on both radial velocity and photometric measurements

Moutou et al.

And if you have any question such as ...

- What is really the mass of CoRoT-7b?
- Which among these new planets are bloated and which are not?
- What kind of blend analysis are performed?
- How the CoRoT planets compare to other transiting planets?
- How the planet modeling is performed?
- What the stellar population in the exoplanet fields look like?
- Are all the planets in the exoplanet fields already detected?
-

