Situation on the exo-side

in operation for 1793 days;
22 runs, 3 considered as closed : IRa01, SRc01, LRc01, 3 on "alarms" and 2 recently provided to CoIs

145 074. LC up to LRc06 --> 3769 transits detected --> 625 assigned for FUp observations --> 24 planets

22233 dwarfs with $\mathrm{R} \leq 14.0$ up to LRc08 among which 18333 are FGKM dwarfs
~ 58. deg sq covered - with $\sim 10 \%$ overlap
duration ranges from 21 days (SRc02) to 152 days (LRc01)

Candidates versus planets

- Transits detected per run:

268 +/- 61 --> LRa02
177 + / - 60 --> LRc03 to LRa04

- Candidates to FUp per run :
$45+/-17$--> LRa02 and a mean of 2 planets
$31+/-19$--> LRc03 to LRa04 and a mean of 0.85 planet
1 CCD lost and candidates ranking has improved so false positives are better filtered out
- Longer runs seem to provide the highest number of planets but no real trend.
- Challenging candidates need also several observation campaigns to be secured e.g. C-22 or C-7. LRc02, SRc02, LRc03, LRc04 , LRc05 fields have been still observed last summer

CoRoT planets

Sub-Jupiter planets, high cost but high scientific value

Giants, high cost and poor characterization

- candidates at the fainter end of the magnitude range have a high cost in terms of FUp whereas they could provide giant planets only. Not very well characterized.

CoRoT planets - highlights - Small sizes

CoRoT - 7b

G9V
Period $=0.85$ days
$M_{p}=7.42 \pm 1.21 M_{\oplus}$
$R_{p}=1.58 \pm 0.1 R_{\oplus}$
$\rho=10.4 \pm 1.8 \mathrm{~g} / \mathrm{cm}^{3}$
Léger et al., A\&A 2009
Hatzes et al., A\&A 2011

CoRoT - 8b
 K1 V

Period = 6.21 days $M_{p}=0.22 \pm 0.03 M_{j u p}$ $R_{p}=0.57 \pm 0.02 R_{\text {Jup }}$ $\rho=1.6 \pm 0.10 \mathrm{~g} / \mathrm{cm}^{3}$
$[\mathrm{Fe} / \mathrm{H}]=0.30 \pm 0.10$
Bordé et al., A\&A 2010

CoRoT - 22b

Go IV
Period $=9.756$ days
$M_{p}=<0.15 M_{j u p}$
$R_{p}=0.52 \pm 0.12 R_{\text {Jup }}$
$\rho=<1.3 \mathrm{~g} / \mathrm{cm}^{3}$

Moutou et al., A\&A 2011

CoRoT planets - highlights - Multiple system

CoRoT planets - highlights - Giants

CoRoT - 9b

CoRoT - 11b

$$
\begin{aligned}
& \text { F7V - vsini }=40 \mathrm{~km} / \mathrm{s} \\
& \text { Period }=2.99 \text { days } \\
& M_{p}=2.33 \pm 0.34 M_{\text {jup }} \\
& R_{p}=1.43 \pm 0.03 R_{\text {Jup }} \\
& \rho=0.99 \pm 0.15 \mathrm{~g} / \mathrm{cm}^{3} \\
& \text { Gandolfi et al., A\&A, } 2010
\end{aligned}
$$

CoRoT planets - Long duration light curves

- Optical orbital phase variation \rightarrow Albedo CoRoT-1b : Snellen et al., 2009, Nature
- Secondary detection \rightarrow Atmosphere properties CoRoT-2b : white LC : Depth $=0.006 \pm 0.002 \%$ (Alonso et al., 2009, A\&A)

- Star planet interactions
- Stellar surface mapping : active regions, spot coverage and evolution ...

Lessons from Kepler

Borucki et al., 2011, ApJ
Planet population at orbital period less than 50 days :
\rightarrow small size planets (range 2-4 $\mathrm{R} \oplus$) are the most numerous
\rightarrow their frequency increases with increasing orbital period
\rightarrow multiple transiting systems are frequent ~18\%

Howard et al., 2011, ApJ

CoRoT detection capability

- CoRoT is well adapted for the detection of Neptune-size planets with orbital period less than a dozen of days and temperate Jupiter-size ones
- Super-Earth size planets could be detected on the very bright stars only.

Proposed strategy for CoRoT-3 /Exoplanet program-1

- Concentrate on bright stars. Cut the targets in the exoplanet channel at $\mathrm{R}=15$.

Objectives :

- lighten the load on the detection and the FUp observations so that effort will concentrate on small-size candidates.
- Use the available telemetry to increase the number of imagettes \rightarrow the centroids curves will be provided and false positives better filtered out.
- Investigate the possibility to use at least 2 sizes of imagettes: one for very bright stars and another for slightly fainter one.
- Improve the selection of targets to be observed with imagettes so that they will be dedicated to the observation of well-secured dwarfs.

Duration of the runs :

- no short runs : detection of Neptune/Super Earth planets impossible.
- 2 intermediate duration runs per season or a single LR

Proposed strategy for CoRoT-3 /Exoplanet

 program-2- Detection of transiting planets around stars with known planets on the asteroseismo CCD.
- A dozen of host-stars identified in the 2 eyes.
- A radial velocity program that aims at detecting planets around bright stars in the CoRoT eyes with an orbital period less than 50 days is proposed: 74 targets (M1 - F5, no binary) brighter than $\mathrm{V}=9$ are identified, and additional 30 stars with magnitudes between 9 and 11.
A dozen of planets expected among which $1+/-1$ could be transiting
- No strong case for re-observation of CoRoT planets but CoRoT-9b

Pointing :

- with a single CCD, dwarfs FGK brighter than mag $R=14$ account for ~ 500 per field. Selection of the field is critical. A study on the planet yields as a function of the stellar population is on going.
- stars with known planets (RV). Possibility to observe outside the "eyes" under investigation. GJ1214 could be reachable.
- observation of a cluster well populated in dwarfs

Beyond CoRoT 2.. CoRoT 3 ?

Scientific goal :

- search for Neptune size planets around bright stars
- characterization of hot Jupiters : bright stars still needed!

