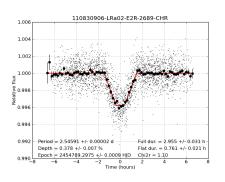
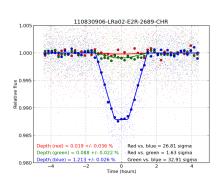
Detecting contaminating eclipsing binaries (CEBs) with the Corot colors

Pascal Bordé

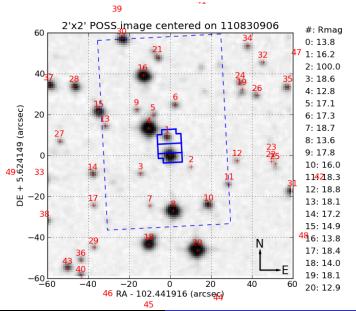
Corot SC meeting #44 – Obs. Paris

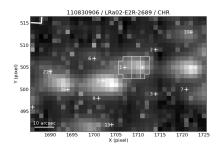

3 July 2012

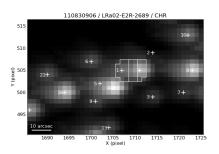


LRa02-E2R-2689-CHR transit light curves

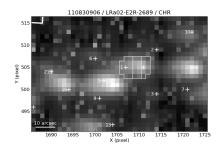
Computed photocenter shift: 0.006 pixel (Tingley & Deeg 2012)

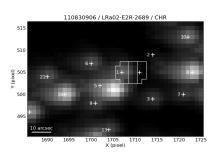




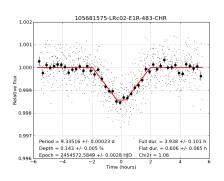

The Palomar view of LRa02-E2R-2689-CHR with PPMXL

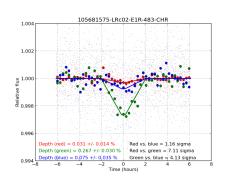
The Corot view of LRa02-E2R-2689-CHR





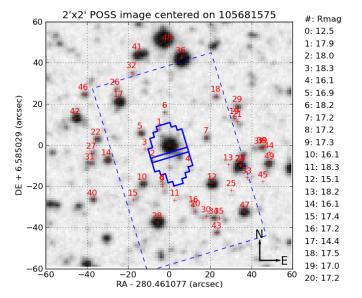
The Corot view of LRa02-E2R-2689-CHR

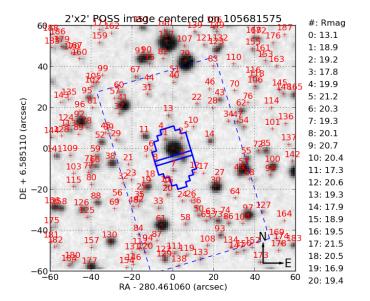




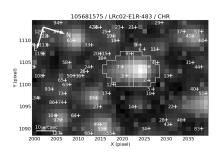
LRc02-E1R-483-CHR transit light curves

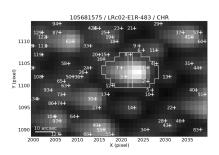
Computed photocenter shift: 0.003 pixel (Tingley & Deeg 2012)



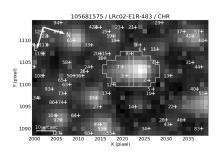


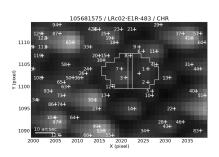
The Palomar view of LRc02-E1R-483-CHR with PPMXL




The Palomar view of LRc02-E1R-483-CHR with Exodat

The Corot view of LRc02-E1R-483-CHR





The Corot view of LRc02-E1R-483-CHR

Contamination calculations for LRc02-E1R-483-CHR

White contamination:										
#	arcsec	R	flux	%	dF/F					
0	I 0.00 I	13.05	9287	97.41	0.16					
1	0.00 5.82	18.90	41	0.44	34.82					
2	6.38	19.20	29	0.44	50.14					
3	6.92	17.79	108	1.14						
4	9.73				13.45					
5		19.86 21.24	10	0.11	> 100					
	10.51		1	0.01	> 100					
6	10.62	20.26	2	0.03	> 100					
7	10.80	19.34	25	0.27	57.61					
8	11.44	20.10	8	0.09	> 100					
9	13.59	20.73	Θ	0.00	> 100					
10	14.41	20.45	Θ	0.01	> 100					
11	15.44	17.29	9	0.10	> 100					
12	15.68	20.60	1	0.02	> 100					
13	16.22	19.30	5	0.05	> 100					
14	18.31	17.94	0	0.00	> 100					
15	18.65	18.94	1	0.01	> 100					
16	19.00	19.54	1	0.01	> 100					
17	19.24	21.47	0	0.00	> 100					
18	19.26	20.51	0	0.00	> 100					
19	22.85	16.94	0	0.00	> 100					
20	22.88	19.42	0	0.00	> 100					
24	26.27	19.88	0	0.00	> 100					
25	26.89	19.95	0	0.00	> 100					
26	27.20	20.21	0	0.00	> 100					
30	28.09	15.33	0	0.00	> 100					
31	29.23	19.44	0	0.00	> 100					
33	29.98	19.19	0	0.00	> 100					
36	31.05	18.98	0	0.00	> 100					
40	32.26	20.02	0	0.00	> 100					
44	33.29	19.24	Θ	0.00	> 100					

Contamination calculations for LRc02-E1R-483-CHR

Color contamination:									
#	red	dr/r	green	dg/g	blue	db/b			
0	98.43	0.03	98.57	0.27	93.64	0.08			
1	0.62	4.91	0.15	> 100	0.13	59.84			
2	0.43	7.13	0.11	> 100	0.09	80.24			
3	0.03	89.30	0.88	30.39	4.49	1.67			
4	0.17	18.44	0.02	> 100	0.01	> 100			
5	0.02	> 100	0.00	> 100	0.00	> 100			
6	0.03	97.43	0.03	> 100	0.01	> 100			
7	0.00	> 100	0.03	> 100	1.20	6.28			
8	0.02	> 100	0.16	> 100	0.21	34.93			
9	0.00	> 100	0.01	> 100	0.00	> 100			
10	0.01	> 100	0.00	> 100	0.00	> 100			
11	0.15	20.31	0.04	> 100	0.01	> 100			
12	0.00	> 100	0.00	> 100	0.08	90.52			
13	0.09	35.54	0.00	> 100	0.00	> 100			
14	0.00	> 100	0.00	> 100	0.00	> 100			
15	0.00	> 100	0.00	> 100	0.05	> 100			
16	0.00	> 100	0.00	> 100	0.06	> 100			
17	0.00	> 100	0.00	> 100	0.00	> 100			
18	0.00	> 100	0.00	> 100	0.00	> 100			
19	0.00	> 100	0.00	> 100	0.00	> 100			
20	0.00	> 100	0.00	> 100	0.00	> 100			
24	0.00	> 100	0.00	> 100	0.00	> 100			
25	0.00	> 100	0.00	> 100	0.00	> 100			
26	0.00	> 100	0.00	> 100	0.00	> 100			
30	0.00	> 100	0.00	> 100	0.00	> 100			
31	0.00	> 100	0.00	> 100	0.00	> 100			
33	0.00	> 100	0.00	> 100	0.00	> 100			
36	0.00	> 100	0.00	> 100	0.00	> 100			
40	0.00	> 100	0.00	> 100	0.00	> 100			
44	0.00	> 100	0.00	> 100	0.00	> 100			

Conclusions

- For CHR light curves, the measures of transit depths in the three colors together with a careful study of the stars' environments make it possible to confidently classify some transit candidates as contaminating eclipsing binaries (CEBs), or at least to better inform follow-up operations.
- Photocenter calculations would complement this information for CHR light curves, and be especially valuable for MON light curves.

