Relations between the br magnitudes in the USNO A2.0 Catalogue and the standard Johnson-Cousins UBVRI magnitudes

Juan Fabregat

Observatorio Astronómico, Universidad de Valencia, Spain

Relations UBVRI - br

- Motivation: possibility of obtaining R magnitudes from the USNO A2 Catalogue for stars in the short run exo fields

Relations UBVRI - br

- Motivation: possibility of obtaining R magnitudes from the USNO A2 Catalogue for stars in the short run exo fields
- Standard R magnitudes are needed to estimate the stellar fluxes in the COROT exo CCD's
- r and b from USNO A2 are photographic magnitudes obtained from the PSS Schmidt plates

Relations UBVRI - br

- Motivation: possibility of obtaining R magnitudes from the USNO A2 Catalogue for stars in the short run exo fields
- Standard R magnitudes are needed to estimate the stellar fluxes in the COROT exo CCD's
- r and b from USNO A2 are photographic magnitudes obtained from the PSS Schmidt plates
- Sample: 525 UBVRI photometric standard stars around the celestial equator presented by Landolt 1992

Relations UBVRI - br

- Motivation: possibility of obtaining R magnitudes from the USNO A2 Catalogue for stars in the short run exo fields
- Standard R magnitudes are needed to estimate the stellar fluxes in the COROT exo CCD's
- r and b from USNO A2 are photographic magnitudes obtained from the PSS Schmidt plates
- Sample: 525 UBVRI photometric standard stars around the celestial equator presented by Landolt 1992
- Cross correlation with the Online USNO-A2 Catalogue Server at the ESO/SF-ECF Archive for 505 stars

R vs r \& B vs b

R vs r \& B vs b

${ }_{8}{ }^{t h}$ COROT Week, Toulouse 23-27 Mav 2005 - p. 3/1

R vs r \& B vs b

- Mean differences:
- $\mathrm{R}-\mathrm{r}=-0.03 \mathrm{mag}$. $\sigma=0.32 \mathrm{mag}$.
- $\mathrm{B}-\mathrm{b}=0.20 \mathrm{mag}$. $\sigma=0.41 \mathrm{mag}$.

R vs r \& (b-r)

R vs r \& (b-r)

- All sky (505 stars): $\quad \mathrm{R}=\mathrm{r}+0.029$ (b-r) $-0.056 \quad \sigma=0.31$ mag.

R vs r \& (b-r)

- All sky (505 stars):
$R=r+0.029(b-r)-0.056$
$\sigma=0.31 \mathrm{mag}$.

B vs b \& (b-r)

B vs b \& (b-r)

- All sky (505 stars):

$$
\mathrm{B}=\mathrm{b}-0.118(\mathrm{~b}-\mathrm{r})+0.320 \quad \sigma=0.40 \mathrm{mag} .
$$

B vs b \& (b-r)

- All sky (505 stars):

$$
B=b-0.118(b-r)+0.320 \quad \sigma=0.40 \text { mag. }
$$

B vs b \& (b-r)

- All sky (505 stars):
$\mathrm{B}=\mathrm{b}-0.118(\mathrm{~b}-\mathrm{r})+0.320 \quad \sigma=0.40 \mathrm{mag}$.
- Winter cone (56 stars):
$B=b-0.146(b-r)+0.166$
$\sigma=0.34$ mag.
- Summer cone (38 stars): $B=b+0.132(b-r)+0.370$
$\sigma=0.35 \mathrm{mag}$.

(B-R) vs (b-r)

(B-R) vs (b-r)

- All sky (505 stars):
$(B-R)=0.853(b-r)+0.377 \quad \sigma=0.43$ mag.

(B-R) vs (b-r)

- All sky (505 stars):
$(B-R)=0.853(b-r)+0.377 \quad \sigma=0.43 \mathrm{mag}$.

(B-R) vs (b-r)

- All sky (505 stars):
$(B-R)=0.853(b-r)+0.377$
$\sigma=0.43 \mathrm{mag}$.
- Winter cone (56 stars):
$(B-R)=0.873(b-r)+0.172$
$\sigma=0.34 \mathrm{mag}$.
- Summer cone (38 stars):
$(B-R)=1.044(b-r)+0.521$
$\sigma=0.38 \mathrm{mag}$.

(B-V) vs (b-r)

(B-V) vs (b-r)

- All sky (505 stars):
$(B-V)=0.524(b-r)+0.242$
$\sigma=0.26 \mathrm{mag}$.

(B-V) vs (b-r)

- All sky (505 stars):
$(B-V)=0.524(b-r)+0.242$
$\sigma=0.26 \mathrm{mag}$.

(B-V) vs (b-r)

- All sky (505 stars):
$(B-V)=0.524(b-r)+0.242$
$\sigma=0.26 \mathrm{mag}$.
- Winter cone (56 stars):
$(B-V)=0.559(b-r)+0.102$
$\sigma=0.21 \mathrm{mag}$.
- Summer cone (38 stars): $(B-V)=0.647(b-r)+0.334$
$\sigma=0.25 \mathrm{mag}$.

(V-R) vs (b-r)

(V-R) vs (b-r)

- All sky (505 stars):
$(\mathrm{V}-\mathrm{R})=0.333(\mathrm{~b}-\mathrm{r})+0.130$
$\sigma=0.19 \mathrm{mag}$.

(V-R) vs (b-r)

- All sky (505 stars):
$(\mathrm{V}-\mathrm{R})=0.333(\mathrm{~b}-\mathrm{r})+0.130$
$\sigma=0.19 \mathrm{mag}$.

(V-R) vs (b-r)

- All sky (505 stars):
$(\mathrm{V}-\mathrm{R})=0.333(\mathrm{~b}-\mathrm{r})+0.130$
$\sigma=0.19 \mathrm{mag}$.
- Winter cone (56 stars):
$(V-R)=0.314(b-r)+0.070$
$\sigma=0.13 \mathrm{mag}$.
- Summer cone (38 stars): $(\mathrm{V}-\mathrm{R})=0.397(\mathrm{~b}-\mathrm{r})+0.188$
$\sigma=0.14$ mag.

(U-B) vs (b-r)

(U-B) vs (b-r)

- All sky (505 stars):
$(U-B)=0.693(b-r)-0.323$
$\sigma=0.46 \mathrm{mag}$.

(U-B) vs (b-r)

- All sky (505 stars):
$(U-B)=0.693(b-r)-0.323$
$\sigma=0.46 \mathrm{mag}$.

(U-B) vs (b-r)

- All sky (505 stars):
$(U-B)=0.693(b-r)-0.323 \quad \sigma=0.46$ mag.
- Winter cone (56 stars):
$(U-B)=0.609(b-r)-0.280$
$\sigma=0.35 \mathrm{mag}$.
- Summer cone (38 stars):
$(U-B)=0.723(b-r)-0.091$
$\sigma=0.65 \mathrm{mag}$.

(R-I) vs (b-r)

(R-I) vs (b-r)

- All sky (505 stars):
$(\mathrm{R}-\mathrm{I})=0.333(\mathrm{~b}-\mathrm{r})+0.118$
$\sigma=0.26 \mathrm{mag}$.

(R-I) vs (b-r)

- All sky (505 stars):
$(R-I)=0.333(b-r)+0.118$
$\sigma=0.26 \mathrm{mag}$.

(R-I) vs (b-r)

- All sky (505 stars):
$(\mathrm{R}-\mathrm{I})=0.333(\mathrm{~b}-\mathrm{r})+0.118 \quad \sigma=0.26$ mag.
- Winter cone (56 stars):
$(\mathrm{R}-\mathrm{I})=0.279(\mathrm{~b}-\mathrm{r})+0.097$
$\sigma=0.12 \mathrm{mag}$.
- Summer cone (38 stars):
$(R-I)=0.367(b-r)+0.191$
$\sigma=0.16 \mathrm{mag}$.

