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Today any research for possible additional planets of the size comparable to the earth is a hypothetical one. This doesn’ t mean that extrasolar 
planetary systems were not able  to form less massive, terrestrial planets. Indeed, as opposed to Jupiter in our solar system, the gravitational 
zone of influence of the extrasolar giant planets often approaches, or sometimes even overlaps with, the habitable zone. There are different 
possible regions where a 'terrestrial planets' in a distance called "habitable zone",  could have (a) liquid water on its surface and (b) a stable 
atmosphere:

When the gas giant is very close to the star from the dynamical point of view there exist stable orbits in the habitable  zone with 
sufficiently small eccentricities over time scales long enough to develop a biosphere.

When this planet moves far enough from its central star to  allow additional planets moving on stable low eccentic orbits closer to 
the star - like in our Solar System.                        

 When the gas giant itself moves in the habitable region a terrestrial satellite (as the ones orbiting Jupiter) could have  the right
 conditions to develop a biosphere.                         

 When the gas giant moves in the habitable region a terrestrial Trojan planet may move on a stable orbit around the  Lagrangian
 equilibrium points L  or L , which could have the right conditions to develop a biosphere.4 5

We have chosen two complementary numerical methods to answer the question of the largeness of the stability region; both 
use direct numerical integrations of the equations of motion. As a first approach we did the computations in the dynamical 
model of the spatial elliptic restricted three body problem consisting of the central star and the gas giant as massive bodies 
and a mass less hypothet ical  ter res t r ia l  p lanet  moving in the gravi ta t ional  f ie ld of  the two masses.
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Figure 3: The size of the stable zone 
of S-type motion in a double star 
system  with mass-ratio 0.2 
depending on the eccentricities of 
the binary (between 0  and 0.5) and 
of the planet (between 0 and 0.5). It 
is clearly seen that an  increase of the 
binary's eccentricity leads to a 
stronger reduction of the stable zone 
than an increase of the planet's 
eccentricity (for more details see 
Pilat-Lohinger & Dvorak, 2002, 
CMDA 82, p. 143). This study can be 
applied to the real binary system 
Gamma Cephei, where e  = 0.44 binary

and e =0.2 so that the border of planet

the stable zone is at 0.17 AU (=3.6 
AU in the double star system Gamma 
Cephei) (for more details see Dvorak 
et al. 2003, A&A, 398, L1).

The 2 integration methods were  the LIE-integration and the Burlirsch-Stoer integration; both with an adaptive step size.

As methods of analysis we used
(i) the Fast Lyapunov Indicators (FLI): The Fast Lypunov Indicator (FLI) measures the length of the largest tangent vector (psi(t)= sup_i 

||v_i(t)||, where i =1, ... n and n denotes the dimension of the phase space= and is therefore a fast method to distinghuish 
between regular and chaotic behaviour. It was introduced by Froeschle et al. in 1997. The computation time depends on the 
investigated system and is in general between 1000 and 100000 times of the longest orbital period.

(Ii) the maximum eccentricity method (MEM): This method provides the value of the largest eccentricity (e) of the orbit, which is also an 
indicator for the variation of the temperature between periastron and apoastron which should not be too large -we estimate that e 
< 0.2 during the integration time is a reasonable choice.

(Iii) the relative Lyapunov Indicators (RLI): The Relative Lypunov Indicator (RLI) measures the convergence of the finite time Lyapunov 
indicators to the maximal Lyapunov characteristic exponents of two very close orbits. This method is extremely fast to determine the 
ordered or chaotic nature of orbits. It was introduced by Sandor et al. in 2000. The computation time for the RLI is a few hundered 
times of the longest orbital period of the investigates system.

Figure 1: Trojanercatalogue (elliptic three body problem): Dependance of the stable region around the Lagrange point L4. For a fine grid in semimajor axis 
(0.85 < a < 1.15 with delta a = 0.01 AU) and in the angular distance of the Lagrange point (0 < l < 180 with delta l = 1 degree)   with different  initial 
eccentricities of the primary's orbit (0, 0.05, 0.1, 0.15) the stable area was determined via numerical integrations. The initial diagramm plot 'l' versus 'a' shows 
the maximum eccentricity achieved during the 1 million year integration of the fictitious Trojan. Instability was defined when -- due to the large eccentricity of 
the Trojan (e > 0.5) -- the area around the Lagrange point was definitely left. Left picture for Jupiter as the primary (m_2=m_Jupiter), right picture for a very 
massive primary (m_2 = 7 m_Jupiter). Comparing the different plot one can see how sensitive is the stable region with respect to the primaries' eccentricity 
AND its mass. Computations for less massive primaries -- down to the mass of Uranus -- did not change the stable area significantly in comparison with the 
one with the mass of Jupiter.

Figure 5: Initial condition diagramm for fictitious massless planets in the system Gl 777 (m_star=0.9 m_sun, m_planet=1.33 m_jupiter, 
semimajor axis a =4.8 AU,  eccentricity e=0.48+/-0.2) for a grid of 80 x 80 in semimajor axes of the ''terrestrial planet'' versus e (of the giant). 
Because of the uncertainty  in the eccentricity we used different initial eccentricities of the giant  planet. The initial orbit of the fictitious planet 
was always circular, the  initial angles were set to 0. The colors indicate the maximum achieved  eccentriicty during the integration of 1 million 
years on the left graph. Using the same data of the numerical integration we determined via reccurence  plots the Renyi entropie, a measure of 
chaos which is equivalent to the Lyapunov exponents (right graph). As in the left plot blue color means  quasiperiodic motion, red color 
indicates chaotique motion. We find in both plots a very similar structure of vertical stripes due high order mean motion  resonances. The 
entropy plot shows many more resonances and the left plot clearly visualizes that the inner part of the habitable zone (0.75 -- 1.25  AU) -- 
where water may be in liquid form -- allows motions for additional planets on low eccentric orbits.

Figure 2: Stable region depending on the inclinations for 
the Jupitersystem as model for ESPs: In this plot one can 
see how the size of the stable region shrinks with the initial 
inclination of the fictitious planet in orbit around the 
Lagrangian equilibrium points. The grid was similar as the 
one for Fig.2; here we can also see that the size of the 
stable region around L4 and L5 is the same. In red we  
visualize the extension of the stable region for i=35, in 
green for i=40 and in blue for i=45 degrees; for 
inclinations up to the 30 degrees the size stays almost the 
same.

Figure 4c: Maximum eccentricity plot for fictitious planets outside the giant planet: Semimajor axis of the 'terrestrial'' planet versus the 
eccentricity of the primary's orbit in the elliptic restricted three body problem. Close to the massive planet all orbits lead to escapes, then 
one can see that globally the eccentricities of the fictitious planet achieved during the 1 million year integration increases with large 
eccentrities of the primary. Well visible are the outer mean motion resonances 1:2, 1:3 and 1:4 on the left plot (for m =Jupiter) and 2

also the high order resonances 1:5 and 1:6 for a 5 times more massive second primary and the same initial conditions.
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Applications for real extrasolar systems

Figure 6: shows the habitable 
zone (green region) and the 
planets of some selected 
extrasolar planetary systems. 
Additional the perihelion of 
the known planets, according 
to their eccentricity is shown 
(red region). For more details 
see Asghari et al., 2004, A&A, 
426, p.353.

 

Figure 4a: Stability map computed by the FLIs for the outer case, when 
the mass-ratio=0.001 (Sun-Jupiter case) and the giant planet starts at 
the peri-center. Low values of the FLI label regular motion (red and range 
regions) and higher values indicate chaotic motion -- either weak (yellow 
and green regions) or strong chaotic (blue regions). The red stripes show 
stable resonant orbits.

Figure 4b: Stability map computed by the RLI for the inner case, when the 
mass-ratio=0.001 and the giant planet starts at the peri-center. Like in 
fig. 1, regular motion is defined by low values of the RLIs (yellow and 
orange region) and chaotic motion is given by high values -- red and 
green regions indicate weak chaos and blue and black regions show the 
strong chaotic behavior. The RLI-plot is dominated by the different mean 
motion resonances. We have to note the peculiar feature in the chaotic 
region, where two almost parallel stripes of regular or weak chaotic 
motion are clearly visible and which indicate satellite-type orbits around 
the giant planet.

Figure 7: Orbits in the Gamma Cephei system (using the 
orbital parameters given by Cochran et al. 2002).

Tables of ESPs in which Trojan-like planets are stable: The upper table gives a summary 
of all systems with one discoverd planet and the lower table shows all possible Trojan-planet 
candidates in multiple extrasolar systems. For more examples see Dvorak et al., 2004, 

Stability catalogue of the HZ of ESPs
We show some examples of a catalogue of dynamical stability in the elliptic restricted three body problem (m : the star, m : the giant planet  and m : a small 1 2 3

terrestrial-like planet), where the configurations 1 and 2 described in the introduction are studied. The whole catalogue consist of 92 stability maps, for which 
the following initial conditions are used:
  -  semi-major axis of the giant planet: 1 (=unit of distance)
  -  eccentricity of the giant planet:  between 0 and 0.5
  -  inclination, argument of peri-astron and node : 0
  -  degree mean anomaly: 0 or 180 degree
Test-planets:

-3  -  semi-major axis (inner case): between 0.1 and 0.9 (with a step of 10 )
-3  -  semi-major axis (outer case): between 1.1 and 4.(with a step of 3.625x10 )

  -  eccentricity, inclination, argument of peri-astron, node, mean anomaly: 0
For the stability study we used the 3 methods described in the introduction. All maps are dominated by mean motion resonances (MMR), that can represent 
either ordered (stable for infinite time) or weakly chaotic (which may become unstable after very long time) behavior. Due to the V-shape of MMRs in the (semi-
major axis, eccentricity)-plane, resonances may overlap for high eccentricities so that chaotic motion occurs. For more details see Sandor et al. (2005, 
submitted to ApJ). How this map can be applied to spezial ESPs can be seen from the systems, that are inserted as examples.
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