False alarms versus planets observational solutions

H.J. Deeg, Inst. Astrofísica Canarias

- Configurations that cause transit-like events
- Overview of methods of false alarm rejection
- Examples from STARE
- What works when?

(adapted fromBrown 2003)

Astron. Sources of false alarms We look for:

Planetary transits MPU (MainSeqSt. - Planet -Undiluted)

Interesting are also:

Brown Dwarf transits MBU (MainSeqSt. - BD -Undiluted)

If we may have found a terrestrial planet we should ascertain:

terrestrial planet across solar-like star

Giant planet or BD crossing giant star

(adapted fromBrown 2003)

Astron. Sources of false alarms

Confusion from:

•Grazing Eclipsing Binaries MSU (MainSeqSt.- Star -Undiluted)

Diluted Eclising Binaries
 EB with deep eclipses + light by bright 3rd star -> shallow eclipses

EB in triple sys MSDT (MainSeqSt.- Star -Diluted -Triple) EB + unrelated (fg/bg) star within psf MSDF (MainSeqSt.- Star -Diluted -Fg/Bg)

What do we expect?

Verification of transit candidates 1

first step:

Careful interpretation of the transit in COROT lightcurve,

- are primary/secondary eclipses distinguishable?
- is there a non-transit-like shape?
- off-transit features?
- how is the color signature?

combined with

knowledge about the star (spectral, luminosity class, from prep. obsv), verify compatiblity with planet - star system (Seager & Mallén-Ornelas, 2003)

- transit depth,
- transit duration, period & 'duty-cycle'
- duration of ingress/egress

Verification of transit candidates 2

second step: observational tests from simple (light-weight) to sophisticated (resource-intensive) ones:

- High res imaging (from INT/WFC obs) or very high res (adapt. optics) Imaging
 - indicates if there are bright enough nearby stars = potentially Ecl. Binaries
- Time-series (transit on-off) photometry with higher spatial resolution
 - detects very most background Ecl. binaries.
- Low-mid res spectroscopy (if not done as preparatory obs.)
 - detects many cases of Ecl. binaries
 - clarification of stellar class
- High res spectroscopy (radial velocities)
 - independent verification of planet

Some examples from STARE

Interpretation of the lightcurve

Are there secondary eclipses?

Nominal period

Double period

-> probably an eclipsing binary

Multi-color timeseries photometry

Vulcan 3433 = ST 6526 transit candidate with dF/F ~1.5% (0.015mag)

Unlikely for a planet: Vshaped eclipse, depth difference in J

Higher resolution imaging

Vulcan 3433 = ST 6526 transit candidate with dF/F ~1.5% (0.015mag) STARE: pixel-size: 11". Re-observation with IAC 80cm telescope (1,2"psf):

Higher resolution imaging 2

The probability to resolve with higher resolution (d_{newpsf}) two unrelated stars that are currently (with d_{oldpsf}) unresolved is:

 $P = 1 - \left(\frac{d_{newpsf}}{d_{oldpsf}}\right)^2$

For COROT data against WHT's NAOMI Imager this is: $d_{COROT} = 20''$ $d_{NAOMI} = 0.2''$ P = 0.9999 = 99.99 %

e.g. if there is an EB in background of a star (case MSDF), probability is very high to separate it with high-res imaging

Transit-on/off photometry with high spatial resolution

Transit on-off imaging/photometry:

Shows which of the faint nearby stars may be generating an EB-like eclipse (most cases should be resolvable with conventional telescope, few need Adapt. Opt.)

Especially useful in the verification process of earth-like transits (*difficult* targets for radial velocity follow-up)

Radial velocity follow-up

Candidate in cygnus ST 4847

Are false alarms detectable?

	MBU	MSU	MSD[T/F]
Lc analysis monocolor	no	Many: prim <> sec transit, trans. duty cycle, in/egress dur.	Some: prim <> sec transit, trans. duty cycle, in/egress dur.
Lc analysis multicolor	no	yes, if $T_1 \leftrightarrow T_2$	yes, if $T_{EB} \iff T_3$
Hi-res imaging	no	no	gives indication
Hi-res transit on-off photom.	no	no	yes, if α (EB,s ₃) > res.
low-res RV spectrosc.	maybe	yes	yes, if F _{EB} not << F ₃
hi-red RV spectrosc.	yes	yes	yes, if F _{EB} not << F ₃

Are all false alarms detectable?

	MSD[T/F]	
Lc analysis monocolor	Some: prim <> sec transit, trans. duty cycle, in/egress dur.	
Lc analysis	yes, if	
multicolor	T _{EB} <<>> T ₃	
Hi-res imaging	gives indication	
Hi-res transit	yes, if	
on-off photom.	α (EB,s ₃) > res.	
low-res RV	yes, if	
spectrosc.	F _{EB} not « F ₃	
hi-red RV	yes, if	
spectrosc.	F _{EB} not << F ₃	

Problematic case to detect false alarm:

EB in background of star if

- EB components temp. $T_1 \approx T_2$
- spat. distance $\alpha(EB,s_3)$ very small
- star temp T₃ ≈T_{EB}
 EB very faint
 - (EB may be up to 7mag fainter)

How likely is this??

if no false alarm cause can be found:
 high res RV spectr. may give
 positive verification (depends on
 brightness, planet-mass)
else:

uncertain detection, upper planet mass limit

Conclusions

Most false alarms should be found from light curve analysis with knowledge of star: importance of previous knowledge photometry, spectra as far as possible

sequence of follow-up observations shall find vast(?) majority of false alarms importance of being prepared for them, 'decision algorithm' for most economic sequence to follow

positive planet verification from RV highly desirable

