Oscillations of rapidly rotating stars

D. Reese, F. Lignières and M. Rieutord UMR CNRS 5572 - Laboratoire d'Astrophysique de Toulouse-Tarbes

Introduction

- **X** Accurate pulsation frequency measurements are expected from Corot
- **X** Case of rapidly rotating stars :
 - \bullet for example : δ Scuti and γ Doradus stars
 - need for accurate predictions
 - theoretical challenge

Two approaches:

- Perturbative
- Numerical

Other people's work

Perturbative methods (valid for small rotation rates)

X Description :

the equilibrium structure and the oscillation modes are the sum of two parts : a non-rotating solution + a deviation

X Some references:

- 2nd order methods :
 - Saio (1981)
 - Gough and Thompson (1990)
 - Dziembowski and Goode (1992)
- 3^{rd} order methods :
 - Soufi, Goupil and Dziembowski (1998)
 - Karami et al. (2005)

Numerical methods (for any rotation rates)

 $m{X}$ Description:

direct numerical computation of 2D equilibrium structure and oscillation modes

- **X** Some references:
 - Clement (1986)
 - Yoshida and Eriguchi (2001)

Our work

- Direct numerical method
- First time results from a direct 2D numerical method have been compared with results from the perturbative approach
- Equilibrium model: uniformly rotating polytropic model of a star

$$P_{o} = K\rho_{o}^{\gamma}$$

$$0 = -\vec{\nabla}P_{o} - \rho_{o}\vec{\nabla}(\phi_{o} + \Omega^{2}s^{2})$$

$$\Delta\phi_{o} = 4\pi G\rho_{o}$$

Linearised adiabatic oscillations :

$$i\omega\rho = -\vec{\nabla}\cdot(\rho_o\vec{v})$$

$$i\omega\rho_o\vec{v} = -\vec{\nabla}p + \rho\vec{g}_o - \rho_o\vec{\nabla}\Phi - 2\rho_o\vec{\Omega}\times\vec{v}$$

$$i\omega\left(p - c_o^2\rho\right) = \frac{\rho_o c_o^2 N_o^2}{\|\vec{g}_o\|^2}\vec{v}\cdot\vec{g}_o$$

$$\Delta\Phi = 4\pi G\rho$$

Ingredients to obtaining accurate frequencies

- 1. Use of adapted coordinate system (ζ, θ, ϕ) [Bonazzola et al., 1998]
- 2. Use of spectral methods in both directions
- 3. Choice of well-behaved quantities as unknowns
- 4. Use of Arnoldi-Chebyshev algorithm

Tests and Accuracy of the method

Tests

- Comparison with Christensen-Dalsgaard and Mullan (1994) in the non-rotating case : $\Delta\omega/\omega\sim 10^{-7}$
- Comparison with Lignières (2003, CW5) : $\Delta\omega/\omega \sim 10^{-6}$
- Comparison with Saio for small rotation rates

Accuracy

• High numerical stability of frequencies : $\Delta\omega/\omega \sim 10^{-6}$

Comparison with 2^{nd} order perturbative method

Comparison with 2^{nd} order perturbative method (2)

Comparison with 2^{nd} order perturbative method (3)

Comparison with 2^{nd} order perturbative method (4)

Comparison with 2^{nd} order perturbative method (5)

Application to a δ **Scuti star**

Adopted parameters

- $v \sin i = 170 \ km.s^{-1}$
- $i = 90^{\circ}$
- $M=2~M_{\odot}$
- $R_{pol} = 1.75 R_{\odot}$ $\Rightarrow \Omega/\Omega_K \sim 0.38$

- The corresponding frequency deviation is : $-14~\mu Hz \le \Delta \nu \le 23~\mu Hz$
- The expected accuracy of Corot is :

$$\Delta \nu = 0.6~\mu Hz$$
 for 20 day runs $\Delta \nu = 0.08~\mu Hz$ for 150 day runs

• For a frequency deviation $|\Delta \nu| \sim 1~\mu Hz$ $\Omega/\Omega_K \sim 0.12$ (revised after talk) $v_{eq} \sim 56~km.s^{-1}$ (revised after talk)

Oscillation mode structure

Nr=30 L=31 L_{res}=92 L_{mod}=32 ϵ =-1.5×10⁻⁹ μ =3.00 Λ =48. Ω =0 \mathcal{C} ₉ α =1

$$\Omega/\Omega_K = 0.00$$

Nr=40 L=57 L_{res}=160 L_{mod}=58 ϵ = 6.9×10⁻² μ =3.00 Λ=54. Ω=0.20 Cor=1

$$\Omega/\Omega_K = 0.38$$

An avoided crossing

An avoided crossing (2)

$$\Omega/\Omega_K = 0.30$$

$$\Omega/\Omega_K = 0.34$$

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

Conclusion

- x need for complete numerical methods for rapidly rotating stars
- **X** future work includes :
 - ullet comparison with 3^{rd} order perturbative methods
 - investigating higher rotation rates
 - characterising frequency spectra, and mode structures
 - trying out different equilibrium models