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Modelling of pulsations of giant stars
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ABSTRACT

Aims. We tackle the problem of interaction between convection and pulsations in giant stars.

Methods. The term (1/ρ)∇ · F′conv is used explicitly in the equations of thermal equilibrium and

energy transfer. This means that the convective flux is no more considered ”frozen” during the

pulsation.

Results. We present the results of numerical computations of oscillation properties of a model of

the G9.5 giant ε Oph, based on the new treatment of convection. The effects on modes stability

and modes inertia are pointed out.
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1. Introduction

Many red giants were observed by the CoRot satellite and tens oscillation frequencies was detected

for each of them. In this paper we develop a tool in order to interpret the observed oscillation prop-

erties of these stars. As is well-known, a red giant star has an extended convective envelope (more

than 90 percents of stellar radius), making the treatment of convection to be very important for

this type of stars. In this context we included in our pulsational code the ”active convection”. The

term ”active convection” means that the convective flux is not ”frozen” during the pulsation. This

is an original idea with respect to the preceding models (Saio 1980, Lee 1993, Guenther 1994).

Thus, a method which takes into account the variation of convective flux in time of pulsation is de-

veloped. The expression of the convective flux is written according to the ”mixing length” theory

(Kipenhahn 1991). The resulting equations allow us to study the interaction between convection

and pulsations, a difficult question of the stellar pulsation theory. Moreover, one can also improve

on the modeling of convection near the surface, but this problem needs to include 3D hydrody-

namical modelling of the surface and the outer part of the convection zones of the giant stars. A

number of tests are done in order to understand better the influence of the ”active convection” on

the theoretical frequency spectrum of giant stars compared to ”frozen” convection.



2 D. Pricopi and M. D. Suran: Modelling of pulsations of giant stars

2. Mathematical model

In order to obtain the eigenfunctions and the eigenfrequencies for linear, non-radial and non-

adiabatic oscillations, in the case of ”active” convection, we will focus on the equations of thermal

equilibrium and transfer of energy. The equation of thermal equilibrium is

T
dδs
dt
= δ

(
ε −

1
ρ
∇ · F

)
(1)

where ε and F denote, respectively, the rate per unit mass of thermonuclear energy generation

and the net heat flux including, in principle, all mechanisms that may be contributing to the heat

transfer, and δs denotes the Lagrangian variation of the specific entropy s. The right-hand side of

above equation reads:
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where E = (1/ρ)∇ · F. The energy flux F contains the radiative flux Frad and convective flux Fconv:

F = Frad + Fconv (3)

where the radiative flux may be expressed using the Eddington approximation:

Frad = −
4π
3κρ
∇J (4)

with

J =
ac
4π

T 4 +
1

4πκ
T

ds
dt

(5)

which is the expression for the mean intensity as indicated by Unno (1966); a = 7.57 ×

10−15ergcm−3K−4 denotes the radiation density constant, c is the velocity of light and κ is opacity

of stellar matter. We can write:

1
ρ
∇ · F′ =

1
ρ
∇ · F′rad +

1
ρ
∇ · F′conv (6)

Many of non-radial, non-adiabatic stellar oscillation codes neglect the term (1/ρ)∇ · F′conv consid-

ering that the convective flux is ”frozen” during the pulsation. In the following we wrote explicitly

this term and included the expression in the energy equation.

From the expression of the radiative flux we obtain:
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where Fr denotes the radial component of the radiative flux.

As regards the convective flux, we can write:
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where (Fr)′conv, (Fθ)′conv and
(
Fϕ

)′
conv

denote, respectively, the radial, polar and azimuthal com-

ponent of the convective flux. In what follows, because of a lack of an adequate theory for time

dependent convection, we will retain only the first term in the right-hand side of the above equation.

Thus, we can write:
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where Fr denotes the radial component of total flux: Fr = (Fr)rad + (Fr)conv. From the expression

of the radiative flux we obtain:

(Fr)rad = −
4acT 4

3κρr
d ln T
d ln r

(10)

As regards the convective flux, we will use the expression given by the ”mixing length” theory

(Kippenhahn 1991):

(Fr)conv = ρcPT
√

gδ
α2

MLT

4
√

2
H1/2

P (∇ − ∇e)3/2 (11)

where αMLT is defined by lm = αMLTHP, lm being the mixing length, HP = −1/(d ln P/dr) = P/ρg

denotes the pressure scale, δ = −(d ln ρ/d ln T ). The quantity ∇e describes the variation of T in the

convective element in time of its motion, its position measured with help of P.

In that following we calculated the relative Lagrangian variation of the radial component of

the radiative and convective flux, and we wrote explicitly the equations of thermal equilibrium and

transfer of energy. Finally, the system of differential equations describing non-adiabatic oscillations

is solved with proper boundary conditions. The whole system of differential equations and the

corresponding boundary conditions will be written down in a forthcoming paper.

3. Case of ε Oph

In order to have a better insight on the effect of the ”active” convection on pulsational stability

in red giant stars compared to ”frozen” convection we calculated radial and strongly trapped non-

radial modes with mode degree l up to 3 of an stellar model for ε Oph obtained by Pricopi (2008).

The model matches (in ±1σ) 16 photometric frequencies observed by MOST satellite (see Table 1).

The fundamental stellar parameters of this model are: M = 2.03M�, Teff = 4892K, L = 59.13L�,

R = 10.76R� and age = 0.73Gyr. The model show us that ε Oph has an convective envelope

extended on 91 percents of stellar radius. Thus, we expect that the effect of variation of convective

flux during the pulsation on the mode stability in giant stars to be important.

4. Conclusions

1. The effect of the term (1/ρ)∇·F′conv on modes inertia becomes important for frequencies higher

than 50µHz in the case of a model of ε Oph. The radial and non-radial strongly trapped modes

with mode degree l = 1, 2 have a lower inertia (they are more detectable) than in the ”classic”

case in which the convection is considered ”frozen” during the pulsations.

2. In the case of ”frozen” convection we have found that all the radial modes are stable (η < 0)

while all the non-radial strongly trapped modes (in the frequency range that was detected, i.e.

< 100µHz) are unstable (η > 0).

3. If the effect of the term (1/ρ)∇ · F′conv is taken into account in the stability analysis we have

found that some of radial modes with low frequency (< 40µHz) are stable while the rest of

them becomes unstable. As regards the non-radial strongly trapped modes (in the frequency

range that was detected, i.e. < 100µHz) some of them becomes stable. The linear growth rates

of these non-radial modes are similar to those of corresponding radial modes.

4. If we focus on the 16 photometric frequencies observed by MOST satellite that are matched in

±1σ by the model (Table 1) we see that 3 of 4 radial modes becomes unstable while 2 non-radial
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Fig. 1. Modal inertia in units of 3MR3, plotted against frequency (the two upper panels). Red color is used for

”active” convective flux and blue color for ”frozen” convective flux. The symbols are displayed only for those

modes that are locally most trapped. We clearly see that the effect of ”active” convective flux is important at

frequencies ≥ 50µHz and inertia has a minima at 140µHz in the case of ”active” convection for all values

of mode degree l. The modes with frequencies below 50µHz seem to be less affected. Coefficient of stability

(η = W/
∫ 1

0
(dW/dx)dx), is plotted against frequency the two bottom panels. The symbols are displayed only

for those modes that are locally most trapped. We clearly see a local positive maxima at 140µHz in the case

of ”active” convection for all values of mode degree l.

modes (one with l = 1 and one with l = 2) become stable in the case of ”active” convection.

So, we are still unable to explain the observed oscillation properties of ε Oph in terms of mode

instability. It is expected that many of them are stochastic excited by turbulent convection.
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Table 1. The 16 photometric frequencies observed by MOST satellite (Kallinger 2008) that are matched in

±1σ by the model. For each frequency, the coefficient of stability and the inertia in terms of 3MR3 are written

down both for ”frozen” convective flux (index 1) and ”active” convective flux (index 2).

νobs[µHz] νcalc[µHz] η1 η2 I1
n I2

n

f1 8.49 ± 0.06 8.47(l = 3) + + 7.08 × 10−4 8.08 × 10−4

f2 13.99 ± 0.09 13.96(l = 2) + + 2.28 × 10−3 4.42 × 10−3

f3 15.20 ± 0.16 15.11(l = 0) - - 4.24 × 10−5 4.01 × 10−5

f4 22.14 ± 0.18 22.01(l = 3) + + 5.66 × 10−6 5.51 × 10−6

f5 24.24 ± 0.12 24.20(l = 1) + + 1.08 × 10−4 9.56 × 10−5

f6 32.57 ± 0.11 32.67(l = 0) - + 2.23 × 10−7 1.86 × 10−7

f7 36.97 ± 0.15 36.95(l = 2) + + 1.51 × 10−6 1.38 × 10−6

f8 38.52 ± 0.09 38.60(l = 3) + + 1.23 × 10−6 8.92 × 10−6

f9 40.16 ± 0.16 40.32(l = 1) + + 1.57 × 10−6 1.20 × 10−6

f10 48.11 ± 0.09 48.15(l = 0) - + 3.20 × 10−8 2.22 × 10−8

f11 54.69 ± 0.14 54.63(l = 3) + + 3.73 × 10−8 2.34 × 10−8

f12 61.92 ± 0.14 61.85(l = 1) + + 3.57 × 10−7 2.30 × 10−7

f13 64.39 ± 0.12 64.34(l = 0) - + 1.94 × 10−8 1.03 × 10−8

f14 67.49 ± 0.17 67.34(l = 1) + - 3.20 × 10−7 1.58 × 10−7

f15 69.27 ± 0.13 69.31(l = 2) + - 8.02 × 10−8 3.75 × 10−8

f16 93.74 ± 0.18 93.91(l = 3) + + 1.58 × 10−8 3.98 × 10−9
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