

FROM COROT TO PLATO

COROT the first space telescope dedicated to

Exoplanet research & Asteroseismology

Thales Alenia Space responsibilities in COROT

- Telescope design & development
- Optical in-flight performance
- Satellite prime (Proteus platform)

Orbit: polar 850 Km

• 5 months of continuous observation

Thales Alenia Space Proposed solution

Optical layout driven by straylight

Main achievements

- Straylight rejection among the highest ever realised.
- Corotel among the most stable space telescopes
- Telescope data used by satellite AOCS
- More than 1000 stars (13 <mv < 16) sampled each 32 s

PLATO next generation of planet finder with

- Simultaneity in transit and asteroseismology measurements
- Number of monitored stars 100x more than COROT

Thales Alenia Space involvement in PLATO

- Support to scientists in Cosmic Vision proposal
- Prime in one of the two parallel industrial studies for ESA

Orbit: L2

• 2 years (goal 3 years) of continuous observation

Thales Alenia Space proposed solution

- Optical layout driven by performance (FOV & collecting area)
- Robust payload design based on COROT experience (use of around 30 identical cameras similar to COROT one)
- Robust satellite design based on Herschel / Planck experience

Main expectations:

- More than 20 000 stars (8 < mv < 11)
 - with photometric noise < 2.7 10-5 in 1 hr.
 - sampled more frequently than 50 s
- More than 80 000 stars (11 < mv < 14)
 - sampled more frequently than 10 min
 - with photometric noise < 8 10-5 in 1 hr.

THALES