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ABSTRACT

ling the F5 star Procyon A, including the comparison between the two different evolutionary codes that have been employed: ASTEC
sen-Dalsgaard, 2008b) and GARSTEC (Garching Stellar Evolution Code) (Weiss & Schlattl, 2008). Aarhus adiabatic pulsation package
8a) has been used fo calculate the frequencies of the models. Our modelling is compared to the preliminary frequency analysis of ground-
5) which suggests two different mode identification scenarios (labelled A and B in that poster).

Diagram (HRD) that we adopted is relatively uncertain: T,¢=6530+90K (Fuhrmann et al. 1997) and log(L/L,,,)=0.85:0.06 (Steffen, 1985). We
on the radius for the fime being, although we do compare the stellar mean density inferred from the analysis with the value 0.172:0.005 pg,,,
adius using the angular diameter 5.404:0.031 mas (Aufdenberg et al. 2005) and the revised Hipparcos parallax (285.93+0.88 mas), and the
ard et al. 2000, Gatewood and Han 2006). The method we use is to compute several grids of standard models scanning through a parameter space
, initial H, He and heavy-element abundances, and the mixing-length parameter, in order to find the evolutionary tracks lying inside the observational
ocedure is followed by the calculation of the oscillation frequencies of the models having properties that are in agreement with the observations. Once
on the frequencies the corrections related to near-surface effects (Kjeldsen et al. 2008). Then we compare the corrected model frequencies with a
rved frequencies (see Poster P-II-015). This work is on-going and we present preliminary results from an intermediate step of our work.

How we apply the near-surface effect corrections ...
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What we see from the above figures is that; scenario A results in a better fit in the Echelle diagram than scenario B, since the low frequency range in scenario B has not
so far seemed reproducable. On the other hand, the preliminary models for the scenario A indicate the absence of near-surface effects, which is expected to be seen in
solar-like stars. However, these results suggest more detailed analysis along with improvement of the physics used in the models.
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