CoRoT's exoplanet harvest The giants!

Heike Rauer, Malcolm Fridlund and the CEST Team

Known extrasolar planets

Detection space for CoRoT

Today, of the known planets only transiting planets can be characterized further.

 \rightarrow Basic planet parameters (mass, radius, density) when combined with radial velocity follow-up

→ albedo, spectral signatures of atmospheres when combined with IR photometry and with spectroscopy

Transiting extrasolar planets

"Discovery space" for CoRoT

→ A large parameter space of transiting planets is still unexplored!

How CoRoT planet detection works...

Close-in giant objects can be discovered in "alarm mode"

- Very high S/N of data
- transit events visible at N1 level

- Observations made during the "initial run" of 58 days duration, starting Feb. 6, 2007
- ~72319 flux measurements
- 33 days with 512 s sampling, then switched to 32 s sampling

Transiting planets around variable stars e.g.: CoRoT-Exo-2b

- Observations made during the first "long run" of CoRoT of 152 days duration
- ~369000 flux measurements with 512 s (1. week) and then 32 s sampling

→The star shows periodic variation over several days due to surface spots →The transit signal is clearly identified; secondary transit tentative (2.5 σ)

The "first 4"!

CoRoT-Exo-1b: P: 1.5089557 d r: 1.49 R₁ m: 1.03 M₁ The star: G0V V = 13.6 magR: 1.11 Rs M: 0.95 Ms

r: 1.01 R_.

The star:

G0V

The "next two" I

CoRoT-Exo-5b

CoRoT-Exo-5b:

period: 4.0384 d radius: 1.28 R_J mass: 0.459 M_J

The star: F9V V = 14.0 mag radius: 1.16 R_{sun} mass: 1.01 M_{sun}

See poster Rauer et al.

The "next two" II

"Discovery space" for CoRoT

Planetary systems of different ages

"Discovery space" for CoRoT

Planets around metal-poor stars

CoRoT-Exo-1b orbits one of the most metal-poor stars.

The star (Barge et al. 2008):				
Type:	G0V			
Mass:	0.95 (± 0.15) Msun			
Radius:	1.11 (± 0.05) Rsun			
Fe/H:	-0.3 (± 0.25)			
Teff:	5950 (± 150) K			
V:	13.6 mag			

Planets and stellar metallicity

- rv-planet searches early established a correlation of high stellar metallicity with planetary systems
- transiting surveys show less pronounced preference for high metallicity
- → Importance of "bias free" planet searches

Searching for additional planets by O-C analysis

Background: additional, gravitational perturbing planets in the system cause variations of the mid-transit times (TTVs).

"Discovery space" for CoRoT

Searching for additional planets by O-C analysis

"Discovery space" for CoRoT

Populating the Desert

Is CoRoT-Exo-3b exceptional?

- CoRoT-Exo-3b orbits a fast rotating star

- mid-sensitivity rv-surveys may be unable to detect planets around fast rotators

- in general, rv-surveys easily eliminated fast rotators from their surveys (focus on slow rotators)

Is CoRoT-Exo-3b exceptional?

- CoRoT-Exo-3b orbits a fast rotating star

- mid-sensitivity rv-surveys may be unable to detect planets around fast rotators

- in general surveys easily eliminated fast rotators from their surveys (focus on slow rotators)

 \rightarrow Close-in, high-mass planets may escape detection around fast rotators due to a selection bias

 \rightarrow High-accuracy transit surveys less biased towards slow rotators

Planets detected by radial velocity

High mass planets around high mass stars

Planets detected by transits

Fill the parameter space with transiting planets with P > 5 days

Possible correlation of planet mass and period

Possible correlation of planet mass and period

Long-period transiting planets do not correlate.

CoRoT4b is in synchronos orbit

 out-of-transit photometric variability indicates a spotted, rotating stellar photosphere

 analysis of the photospheric variability, assuming activity regions remain for 2-3 rotation periods

• the rotation period P*=8.87 days derived photometrically is consistent with spectroscopic $v \sin i = 6.4 + 1.0 \text{ km s-1}$

 \rightarrow planet and star are in a 1:1 resonance

CoRoT exciting targets I

- Monotransit found in IR01
- transits found again in LRa01
- P~ 50 days
- depth = 5.6%
- planet candidate if star is small \rightarrow follow-up ongoing

CoRoT exciting targets II

CoRoT finds exciting objects e.g.: possible very excentric binary? circumbinary objects?

CoRoT exciting targets III

0.8

Summary: CoRoT contributions to transit searches

- 6 giant objects with very accurate parameter determinations
- Planet around low-metallicity star
- Filling the "brown dwarf desert" → closing the gap between planet and brown dwarfs
- Filling the parameter space of transiting planets with large orbital periods
- Small transiting planets

More material...

Measurement of the Rossiter effect in CoRoT-Exo-2b

Fig. 1. Phase-folded radial velocity measurements of CoRoT-Exo-2 during the transit of the planet with SOPHIE (dark circle) and HARPS (open circle). The solid line corresponds to the Rossiter-McLaughlin model ajusted to these data assuming the semi-amplitude $K = 563 \text{ m s}^{-1}$ from Alonso et al. (2008). The dotted line corresponds to the Rossiter-McLaughlin model with *K* as free parameters.

 the planet has a prograde orbit with respect to stellar rotation

• the sky-projected angle between the stellar spin and the planetary orbital axis is close to zero $\lambda = 7.2 \pm 4.5$ deg

Show also?

Planets and metallicity of their central stars

Rv + astrometry

Transiting planets

	Table 1. Description of $CoRoT$ runs in 2007-2008.					
CoRoT-Exo-1b	Run	Date start-end	duration [d]	$\mathbf{R}\mathbf{A}$	DEC	
CoRoT-Exo-4b	HRa01	02-03/2007	45	06:44	-01:12	
	SRc01	04/2007	26	18:41	07:10	
CoRoT-Exo-2b	LRc01	05-09/2007	152	19:23	00:27	
CoRoT-Exo-3b	LRa01	10/2007-02/2008	150	06:47	-00:12	
	SRa01	03/2008	25	06:40	+9:10	
CoRoT-Exo-5b	LRc02	04-09/2008	150	19:00	-03:20	
CoRoT-Exo-6b						

- - f (C - D - T)00.1.1 -1 TN 2 A 2

Optionally to be removed

Transiting extrasolar planets

"Discovery space" for CoRoT

Transiting planets can be characterized!

- Basic planet parameters (mass, radius, density) only measured for transiting planets

- transiting planets can be characterized further in follow-up investigations (e.g. albedo, spectra)

→ A large parameter space of transiting planets is still unexplored!