The enigmatic granulation background of HD49933

Hans-Günter Ludwig

CIFIST Marie Curie Excellence Team

Observatoire de Paris-Meudon (GEPI)

Réza Samadi

Observatoire de Paris-Meudon (LESIA)

GEPI-CIFIST

Overview

- Predictions of granulation-related photometric fluctuations
 - "background signal" in p-mode region
 - comparison to COROT long-duration observing run: F-dwarf HD49933
- Ab-intio simulations of convective flows including detailed radiative transfer
 - local models, three-dimensional, time-dependent capturing the convective dynamics
 - CO⁵BOLD radiation-hydrodynamics code
 - "3D stellar atmospheres"
- The match to HD49933 is not satisfactory. Why?

⊳ FIN

Observational photometric data courtesy COROT group

Two hydrodynamical model atmospheres for HD49933

- $T_{\rm eff}$ =6740 K, $\log g$ =4.25 close to measured parameters
- [Fe/H]=0.0 and -1.0 bracketing the measured value of $[Fe/H]\approx$ -0.3...-0.4
- Scales of granulation pattern a bit smaller and contrast higher in metal-poor model

Micro-variability ▷ TOC ▷ FIN 2.1

Lower metallicity implies higher surface densities

Micro-variability

Higher densities and contrasts favor lower velocities

Micro-variability ▷ TOC ▷ FIN 2.3

Statistical scaling of local model to full stellar disk

- Hydrodynamical model provides a time series of the radiation intensity at different limb-angles including the temporal convection-related fluctuations
- ullet With an assumption of the stellar radius R this can be scaled to the emission integrated over the stellar disk
 - $ightharpoonup R^{-2}$ dependence of temporal spectral power density
 - for details see Ludwig 2006, A&A 445, 661
- Fit of analytical model to synthetic raw power spectrum to reduce noise and eliminate acoustic eigen-modes of computational box

Micro-variability ▷ TOC ▷ FIN 2.4

Observational validation: Sun seen by SOHO/VIRGO

- Satisfactory run of continuum, eigenmodes not directly comparable, absolute scale!
- Magnetic activity dominates signal towards low frequencies

Micro-variability

Predictions for Corot's main target HD49933

- Bolometric background signal stronger in p-mode region than observed
- Shape of the power spectrum not well matched: activity? local dynamo?

Micro-variability ▷ TOC ▷ FIN 2.6

HD49933 does not seem to be an exceptional case

Lightcurves of solar 2D MHD runs of increasing magnetic flux

- Change of granular dynamics by magnetic field mainly influences highest frequencies
- Polarization: no globally organized magnetic field on 1 G level (C. Catala, p.comm.)

Micro-variability ▷ TOC ▷ FIN 2.8

Take away . . .

- 3D model atmospheres can be used to predict granulation-related disk-integrated brightness fluctuations
 - reasonably successful for the Sun
- Mismatch between predictions and observed granulation background of HD49933
 - HD49933 typical case among the F-dwarfs observed by COROT
- Are magnetic fields produced by dynamo action the culprit?
 - signature of spots clearly present in light curve
 - no significant magnetic field present which is structured on global scales (polarimetry with NARVAL & ESPADONS)
 - local dynamo action in granulation if present unlikely to be responsible for increase of power towards low frequencies

Predictions for Corot's main target HD49933 & Simu-LC

Spatial power spectra of granulation pattern of HD49933 models

Simulations provide surface averages of emergent intensity

- Statistical scaling of local model to full disk, center-to-limb variation
- ullet Power spectra of photometric time series have R^{-2} dependence

Simulated time series provide only limited statistics

Power spectrum of simulated time series (red) quite noisy

⊳ FIN

Fit of simple analytical model for granulation background + box modes (black)

Extrapolation from local model to disk-integrated properties

- Assumptions entering algebraic considerations:
 - convection pattern statistically homogeneous
 - each simulation patch is statistically independent
 - oscillations different: modes by definiton spatially correlated
- Expectation of value frequency component of power spectrum

$$\frac{\left\langle \hat{f}\hat{f}^* \right\rangle}{\left\langle f \right\rangle^2} = N^{-1} \frac{\sum_{m=1}^{M} w_m \mu_m^2 \left\langle \hat{I}_m \hat{I}_m^* \right\rangle}{\left(\sum_{m=1}^{M} w_m \mu_m \left\langle I_m \right\rangle \right)^2}$$

- superposition of individual power spectra of intensities at different limb-angles
- ullet N number of radiating patches
- $m NA = 2\pi R_*^2$, A patch area, R_* stellar radius

⊳ FIN

- ullet Power of relative brightness fluctuations scales as R_*^{-2}
 - needs to be provided, not intrinsic to the local model

ras ⊳ TOC

Superposition of "patches" produces disk-integrated fluctuations

- Temporal fluctuations of disk-integrated flux $f(t) \propto \oint dA \, \mu \, I(x,y,t)$
- Fluctuations in apparent stellar position, photocenter $x_{
 m ph}(t) \propto \oint dA \, \mu \, I(x,y,t) \, x$

Favorite asteroseismological targets: Sun, Procyon, η Bootis

Statistical uncertainty on total power $\pm 20\%$

Scaling of brightness fluctuations with gravity (and $T_{\rm eff}$)

 ${\color{red} \blacktriangleright}$ Time-scales scale approximately with the atmospheric acoustic cut-off time scale $\frac{2H_{\rm p}}{c_c}$

Scaling of brightness fluctuations with $T_{\rm eff}$ at solar gravity

- red 4000 K, green 4600 K, lightblue 5200 K, blue 5800 K, violet 6400 K
- $T_{
 m eff}>$ 4600 K behavior, $au_{
 m c}pprox{
 m const}$, amplitude depends on R- $T_{
 m eff}$ relation

Extras

Photocentric fluctuations versus surface gravity

 \blacksquare Metal poor [M/H]=-2 model off the main trend

⊳ FIN

Why AU units?

Scaling of brightness fluctuations with gravity (and $T_{\rm eff}$)

 ${\color{blue} \blacktriangleright}$ Time-scales scale approximately with the atmospheric acoustic cut-off time scale $\frac{2H_{\rm p}}{c_{\rm s}}$

Procyon: comparison to MOST & WIRE observations

- Theoretical (blue) time series resampled to unevenly sampled observed series (black)
- WIRE: large data gaps, "cross talk" between Fourier modes, spectral power? shape?

CO⁵BOLD simulated path of the photocenter of a red giant star

GAIA precision level: only relevant for close-by giants

Excitation spectra for 5min-type oscillations in late-type stars

- © Stein, Georgobiani, Trampedach, Ludwig, Nordlund, 2004
- Some simulated time sequences long enough to resolve box modes
- Model for studying mode damping?

p-mode excitation

→ TOC

Solar photometry: SOHO/VIRGO & non-grey CO⁵BOLD model

- ▶ VIRGO: solar minimum, SPM & PMO6 data, steep decline $\approx \nu^{-4}$ towards high ν
- ightharpoonup CO 5 BOLD: validates approach, limited statistics, p-modes?

p-mode excitation ▷ TOC ▷ FIN 5.2

η Bootis: comparison to MOST observations

- \blacksquare Power compatible at intermediate frequencies, S/N level not quite sufficient
- Waiting for COROT ... (inspired by Samuel Backett)

p-mode excitation

Stellar connection: Sun & Procyon (& beyond)

red & green Sun, blue Procyon non-grey, violet Procyon grey

⊳ FIN

■ light blue scaled Sun: $P_{\nu} \times 15.5$, $\nu \times 0.42 \to \frac{\sigma_f}{\langle f \rangle} \times 2.6$, MOST $\approx \times 5$