Separations and

phase shift differences

of 1-06phodes

Solar Time series and Power spectrum

Large Δ and small d separations

Small separations: $\quad \Delta_{0}(n)=v_{n, 0}-v_{n-1,0}$
$\Delta_{1}(n)=v_{n, 1}-v_{n-1,1, \text { etc }}$
Small separations: $d_{02}(n)=v_{n, 0}-v_{n-1,2}$
$\mathrm{d}_{13}(\mathrm{n})=v_{n, 1}-v_{n-1,3}$

Classical separations

$$
\begin{gathered}
\Delta_{0}(\mathrm{n})=v_{n, 0}-v_{n-1,0} \\
\Delta_{1}(\mathrm{n})=v_{n, 1}-v_{n-1,1, \text { etc }} \\
\mathrm{d}_{02}(\mathrm{n})=v_{n, 0}-v_{n-1,2} \\
\mathrm{~d}_{13}(\mathrm{n})=v_{n, 1}-v_{n-1,3}
\end{gathered}
$$

Solar model A

CoRoT stars are not easy - probably only $\mathrm{l}=0,1$ modes

l=0,1 "Large"separations

l=0,1 Small Separations

$l=0,1$ Small Separations

$$
\begin{array}{lll}
\Delta_{01}(\mathrm{n})-\Delta_{10}(\mathrm{n}) & \Rightarrow & \mathrm{d}_{01}(\mathrm{n})=v_{n, 0}-\left(v_{n-1,1}+v_{n, 1}\right) / 2 \\
\Delta_{01}(\mathrm{n}+1)-\Delta_{10}(\mathrm{n}) & \Rightarrow & \mathrm{d}_{10}(\mathrm{n})=\left(v_{n, 0}+v_{n+1,0}\right) / 2-v_{n, 1}
\end{array}
$$

5 point: $\operatorname{dd}_{01}(\mathrm{n})=\left(v_{n-1,0}-4 v_{n-1,1}+6 v_{n, 0}-4 v_{n, 1}+v_{n+1,0}\right) / 8$

$$
\operatorname{dd}_{10}(\mathrm{n})=-\left(v_{n-1,1}-4 v_{n, 0}+6 v_{n, 1}-4 v_{n+1,0}+v_{n+1,1}\right) / 8
$$

I=0,1 small separations

$$
\begin{array}{rr}
\mathrm{d}_{01}(\mathrm{n}), & \mathrm{d}_{10}(\mathrm{n}) \\
\mathrm{dd}_{01}(\mathrm{n}), & \mathrm{dd}_{10}(\mathrm{n})
\end{array}
$$

Both show a mean variation similar to but different from $\mathrm{d}_{02}(\mathrm{n})$ giving a diagnostic of the internal structure, and a periodicity about the mean indicating a region of sharp change

Solar model A

Solar data from BiSON and GOLF

Power Spectra $(0,1)$ separations (Amplitude $\left.{ }^{2}\right)\left(\mu \mathrm{Hz}^{2}\right)$

Periodic modulations

Modulation caused by 'discontinuities' in acoustic variables ($\left(, \Gamma_{1}, \rho\right.$)
Modulation frequencies $\approx 1 /(2$ distance from boundary) $1 /(2 t), 1 /(2 \tau)$

$$
\begin{gathered}
\Delta=1 /(2 T) \approx 136 . \quad \tau: v_{\mathrm{He}} \approx 800, v_{e} \approx 230 . \quad \tau: v_{\mathrm{He}} \approx 165, v_{e} \approx 350 \\
t+\tau=T \Rightarrow 1 / v_{t}+1 / v_{\tau}=1 / \Delta \text { pairs }
\end{gathered}
$$

Origin of modulation frequencies

$$
\frac{d^{2} \psi}{d t^{2}}-\frac{\ell(\ell+1)}{t^{2}} \psi+\left(\omega^{2}-V_{\ell}\right) \psi=0
$$

$$
\chi=\frac{\omega \psi}{d \psi / d t}=\tan (\omega t+\delta) \quad t=\int \frac{d r}{c}
$$

$$
\frac{d \delta}{d t}=-\frac{V_{0}}{\omega} \sin ^{2}(\omega t+\delta) \quad \rightarrow \quad \delta(\omega, t)
$$

$$
\Delta \delta=-\int_{0}^{t} \frac{V_{1}}{\omega} \sin ^{2}(\omega t+\delta) d t \quad \Delta \delta(t)=-\frac{\left[V_{1}\right]_{-}^{+}}{2 \omega}\left[\cos \left(2 \omega t_{1}+2 \delta_{1}\right)-1\right] t>t_{1}
$$

$$
\chi=\tan [\omega t+\delta(\omega, t)+\Delta \delta(\omega, t)]=0 \quad \text { at } \quad t=T
$$

$$
\begin{gathered}
\omega T=n \pi-\delta(\omega)+\Delta \delta(\omega) \\
\delta(\omega)=F(V)=F[\rho(r)]
\end{gathered}
$$

$$
\Delta \delta(\omega) \propto \cos \left(\frac{\omega}{\omega_{1}}+2 \delta_{1}\right) \quad \omega_{1}=\frac{1}{2 t_{1}}
$$

Phase shifts and the eigenfrequency equation

$$
\psi_{\ell}=r p_{\ell}^{\prime} /(\rho c)^{1 / 2}
$$

$$
\chi_{\ell}=\frac{2 \pi \nu \psi_{\ell}}{d \psi_{\ell} / d t}=\tan \left[2 \pi \nu t-\frac{\pi}{2} \ell+\delta_{\ell}(\nu, t)\right]
$$

$$
\chi_{\ell}=-\frac{2 \pi \nu \psi_{\ell}}{d \psi_{\ell} / d \tau}=-\tan \left[2 \pi \nu \tau-\alpha_{\ell}(\nu, \tau)\right]
$$

These must be equal at $t_{f}=T-\tau_{f}$

$$
2 \pi \nu_{n, \ell} T=\pi\left(n+\frac{\ell}{2}\right)+\alpha_{\ell}(\nu)-\delta_{\ell}(\nu)
$$

integer n

Small separations and phase shifts

since $\alpha_{0}(v)=\alpha_{1}(v)$ and using the eigenfrequency equation

$$
\begin{aligned}
d_{01} & =\nu_{n, 0}-\left(\nu_{n-1,1}+\nu_{n, 1}\right) / 2 & d_{01} & =\frac{1}{2 \pi T}\left(\delta_{1}-\delta_{0}-\frac{d^{2}\left(\alpha-\delta_{1}\right)}{d \nu^{2}} \frac{\Delta_{1}^{2}}{8}+\ldots\right) \\
d_{10} & =\left(\nu_{n, 0}+\nu_{n+1,0}\right) / 2-\nu_{n, 1} & d_{10} & =\frac{1}{2 \pi T}\left(\delta_{1}-\delta_{0}+\frac{d^{2}\left(\alpha-\delta_{0}\right)}{d \nu^{2}} \frac{\Delta_{0}^{2}}{8}+\ldots\right)
\end{aligned}
$$

to leading order these are determined by $\delta_{1}-\delta_{0}$, which is determined by the interior structure

$$
d d_{01}(n)=\frac{1}{2} d_{01}(n)+\frac{1}{4}\left(d_{10}(n)+d_{10}(n-1)\right) \quad \text { cancels out } \mathrm{d}^{2} \alpha / \mathrm{d} v^{2}
$$

The mean variation of $\delta_{1}-\delta_{0}$ determined by the interior structure periodic modulation by boundaries of convective envelope, core ...

Large separations and phase shifts

$$
\begin{gathered}
\Delta_{1}=\nu_{n, 1}-\nu_{n-1,1}=\frac{1}{2 T}\left(1+\frac{1}{\pi}\left[\frac{d \alpha}{d \nu} \Delta_{1}-\frac{d \delta_{1}}{d \nu} \Delta_{1}\right]+\ldots\right) \approx \frac{1}{2 T} \\
\Delta_{0}=\nu_{n, 0}-\nu_{n-1,0}=\frac{1}{2 T}\left(1+\frac{1}{\pi}\left[\frac{d \alpha}{d \nu} \Delta_{0}-\frac{d \delta_{0}}{d \nu} \Delta_{0}\right]+\ldots\right) \approx \frac{1}{2 T} \\
\Delta_{01}=\nu_{n, 0}-\nu_{n-1,1}=\frac{1}{2 T}\left(\frac{1}{2}+\frac{1}{\pi}\left[\delta_{1}-\delta_{0}+\frac{d \alpha}{d \nu} \Delta_{01}+\frac{d\left(\delta_{0}-\delta_{1}\right)}{d \nu} \frac{\Delta_{01}}{2}\right]+\ldots\right) \\
\Delta_{10}=\nu_{n, 1}-\nu_{n, 0}=\frac{1}{2 T}\left(\frac{1}{2}+\frac{1}{\pi}\left[\delta_{0}-\delta_{1}+\frac{d \alpha}{d \nu} \Delta_{10}+\frac{d\left(\delta_{1}-\delta_{0}\right)}{d \nu} \frac{\Delta_{10}}{2}\right]+\ldots\right)
\end{gathered}
$$

The difference between Δ_{01} and Δ_{10} is primarily due to $\delta_{1}-\delta_{0}$ which is determined by the interior structure

Can we say anything about CoRoT stars: HD49933?

Large separations HD49933

Power Spectrum of residuals to linear fit dd01,dd10

HD49933_CoRoT.freq

Residual Large separations DO, D1

2nd differences d20, d21
(

Power Spectrum of residuals to linear fit DO+D1

Power Spectrum of residuals to linear fit d20,d21

Does it make sense?

Periods should match in pairs $1 / v_{t}+1 / v_{\tau}=1 / \Delta$
Envelope model fitted to large seps gives $T \sim 5680 \mathrm{~s}, \Delta \sim 88 \mu \mathrm{~Hz}$ (guide)
HeII acoustic depth ~ 900secs; $v_{\text {не }} \sim 450-650 \mathrm{mHz}$
accoustic depth of base Con Zone $\sim 2380 \operatorname{secs} ; v_{C Z} \sim 210 \mu \mathrm{~Hz}$
signals at $\sim 220 \mu \mathrm{~Hz}$ and $\sim 350 \mu \mathrm{~Hz}$ should have corresponding signals at ~ 150 and 120 (Nyquist $\sim 86 \mu \mathrm{~Hz}$)
signal $\sim 700 \mathrm{mHz}$ could be HeII zone ; corresponding signal $100 \mu \mathrm{~Hz}$
Not convinced frequencies are accurate enough !

Power Spectrum of residuals to linear fit d01,d10

Power Spectrum of residuals to linear fit dd01,dd10

Residual Large separations DO, D1

2nd differences d20, d21

Power Spectrum of residuals to linear fit DO+D1

Power Spectrum of residuals to linear fit d20,d21

Residual Large separations D0, D1 hd49933_IRLR.txt
Power Spectrum of residuals to linear fit D0,D1

2nd differences $d 20$, d21

Power Spectrum of residuals to linear fit d20,d21
-

Small separations dd01, dd10
(

Power Spectrum of residuals to linear fit dd01,dd10

Periods should match in pairs $1 / v_{t}+1 / v_{\tau}=1 / \Delta$
158 in 2nd diff: from depth of Czone hence should be signal of ~200 from radius in d01-there!
If 750 is signal from HeII in D could be signal of ~ 100 in d01
signal ~520 in d01 should be 105 in 2nd diff
If 700 signal acc depth of HeII zone could be signal 100 in 2nd diff
Large seps: 86-88 T = 5680-5800
Envelope model fitted to large seps (not nec correct) gives
HeII 450-650; BCZ v~210, T (acc radius) $=5680(+-70)$ secs
should be

$$
\begin{gathered}
l=0,1 \text { separations } \\
\mathrm{d}_{01}(\mathrm{n})=v_{n, 0}-\left(v_{n-1,1}+v_{n, 1}\right) / 2 \\
\mathrm{~d}_{10}(\mathrm{n})=\left(v_{n, 0}+v_{n+1,0}\right) / 2-v_{n, 1} \\
\operatorname{dd}_{01}(\mathrm{n})=\left(v_{n-1,0}-4 v_{n-1,1}+\right. \\
\left.6 v_{n, 0}-4 v_{n, 1}+v_{n+1,0}\right) / 8 \\
\operatorname{dd}_{10}(\mathrm{n})=-\left(v_{n-1,1}-4 v_{n, 0}+\right. \\
\left.6 v_{n, 1}-4 v_{n+1,0}+v_{n+1,1}\right) / 8
\end{gathered}
$$

Solar model A

Oscillations of a Spherical Star

$$
\delta \Psi(\mathrm{r}, \mathrm{t})=\psi_{n l m}(\mathrm{r}) \mathrm{Y}_{l m}(\theta, \phi) \mathrm{e}^{\mathrm{i} 2 \pi \mathrm{vt}}
$$

$v=v_{n, l, m} Y_{l m}$ spherical harmonics
n radial order \approx no of nodes
l degree, m azimuthal order
Only modes of low degree observable over integrated disc m degenerate $\Omega, \mathbf{B}=0$

$$
n=18, l=2, m=2
$$

$$
v_{n, l, m}=v_{n, l, 0} \equiv v_{n, l}
$$

Large separations HD49933

Large separations HD49933

