Analysis of rotation of CoRoT dwarf stars IRaO1 - LRcO1

Additional program P.I. F. Favata

L. Affer¹, G. Micela¹, F. Favata², E. Flaccomio¹

1. Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo

2. European Space Agency

Sample selection criteria

Analysis steps

- selection of valid flux data (no SAA fluxes)
- automatic separation of LCs in "initial" and "long" runs
- rebinning of the data to 2h ("correction" for the orbital period)
- detrend of LCs with polynomial fitting
- automatic selection of LCs without jumps
- Lomb Scargle periodogram
- Folding with 1st and 2nd period
- Significance of the peaks (1000 LCs "resampled" for each target)

Selected LCs Light curves without 'jumps'

Total: 10162 Selected LCs: Short: 4348 Long: 3521 Tot sel: 7869 ~ 23% rejected

Lomb - Scargle periodogram

Some examples obtained

A test case: NGC 2264

A test case: NGC 2264

Check: 25 Prot(routine) vs Prot(catalogue) 20 (Lamm et al. 2004) Prot(catalogue) 15 156 LCs 10 (150 selected, 6 rejected) 5 15 20 25 30 0 5 10

derived periods well agree with published ones (within a factor 2)

Prot(routine)

Rotational Periods

Scientific goal: Selection of fast rotating stars Young stars → Recent star formation history in the solar neighborhood

Rotational Periods

~53% F-type ~50% G-type ~19% K-type with P_rot < 15 days

Rotation-Age Calibration (Gyrochronology Relations)

We assume:

- 1. constant star formation rate in 10¹⁰ years
- 2. rotation = f(age)

f(B-V,t) = f(B-V)g(t)	Parameter	Value
$G(B-V) = a[(B-V)_0 - c]^b$	a	0.407 ± 0.021
	b	0.325 ± 0.024
	c	0.495 ± 0.010
$g(t) = t^n$	n	0.566 ± 0.008

(Barnes 2007; Mamajek & Hillenbrand 2008)

Rotation-Age Calibration (Gyrochronology Relations)

We assume:

excess of F, G and K-type stars with ages $t \le 10^8$ years

excess of G and K-type stars with ages $10^8 < t \le 10^9$ years

burst of star formation? in agreement with X-ray surveys results!

Next steps

Spectroscopic follow-up observations of candidate young stars with P_{rot} < 15 days are needed

Spectroscopic analysis: Lithium abundance Metallicity Radial velocity

to disentangle tidally locked binaries from young stars amongst fast rotators