Theoretical amplitudes and lifetimes of non-radial oscillations in Red Giants

Marc-Antoine Dupret,

K. Belkacem, R. Samadi, J. Montalban, O. Moreira, A.Miglio, M. Godart, P. Ventura, H-G. Ludwig, A.Grigahcene, M-J. Goupil, A. Noels, E. Caffau

Observatoire de Paris, France

Université de Liège, Belgium Osservatorio di Roma Universidade do Porto

First CoRoT
International Symposium

Paris
2-5 February 2009

Plan of the presentation

- Mode physics in red giant stars
- Predictions for specific models

Subgiants Intermediate High luminosity

- Conclusions

How red giants differ from the Sun?

How red giants differ from the Sun? Regular frequency pattern ~ Asymptotic

Mode trapping

See also Dziembowski et al. (2001) Christensen-Dalsgaard (2004)

Mode trapping

See also Dziembowski et al. (2001) Christensen-Dalsgaard (2004)

Stochastic excitation (top of the convective envelope)

Samadi et al. (2003, ...), Belkacem et al. (2006, ...)

$$P = pI^{-1}$$

Reynolds stress

Entropy

Stochastic excitation model

chastic excitation (top of the convective envelope)

the modes e resolved :

- time $<< T_{obs}$

Height in the power spectrum

$$H = \frac{p}{2\eta^2 I^2}$$

If η / I^{-1} : $H \propto p$

Mode profile

Similar heights for radial and resolved non-radial modes

f the modes not resolved: $H = \frac{T_{obs} p}{4 n I^2}$ << life – time

$$H = \frac{T_{obs} \eta}{4 \eta I^2}$$

$${
m If}~\eta~/~{
m I}^{ ext{-}1}$$
 : $H~\propto~T_{obs}/ au$

wective damping in the envelope

erent interaction convection-oscillations

Gabriel (1996), Grigahcène et al. (2005) theory

diative damping in the core

a cavity with short Large variations of the elength oscillations: temperature gradient

Models considered

A: Model at the bottom of red giant branch

A: Model at the bottom of red giant branch

A: Model at the bottom of red giant branch

e CoRoT red giants have a complex frequency spectrum!

some CoRoT red giants, echelle diagrams can be built!

High luminosity model in the red giant branch

High luminosity model in the red giant branch

clusions: A. Model at the bottom of red giant branch milar heights for radial and resolved non-radial modes: Complex spectrum! 3 M-140 160 180 200 220 240 260 1.8 2 M-1.6 1.4 1.2

clusions: B. Intermediate model in the giant branch dial modes and envelope apped non-radial modes: irge, small separations (but groups for $\lambda = 1$) 3 M-40 45 50 55 65 2 Ml=1.

clusions: C. Intermediate model in the giant branch Radial modes and envelope rapped non-radial modes: large, small separations 3 M-16 18 20 22 24 26 28 2 M-1.6 1.4 1.2

Conclusions of the conclusions

in we explain the detection of n-radial modes in red giants?

Can we explain the regular terns in some power spectra?

Yes!
Thanks to mode trapping and

Interpretation

Damping rate
$$= \sqrt{\frac{GM_c}{R_c^3}} \frac{RL}{GM^2} \frac{R^2}{R_c^2} \frac{M}{M_c}$$

$$= \frac{+1)}{2\sigma^2} \int_0^{r_0} \left(\frac{\nabla_{\rm ad}}{\nabla} - 1\right) \frac{\nabla_{\rm ad} N g L}{P r^5} \, \mathrm{d}r + \dots$$

$$= \frac{1 \ / \ \text{Kelvin-Helmholtz}}{\text{time}}$$

$$\propto \sqrt{GM_c/R_c^3} \qquad \text{Radiative as star evolves}$$

 $M=2 M_-$, $Log(L/L_-)=1.8$, pre-He burning

Pre-Helium versus Helium burning

Pre-Helium

 $M=3~M_-$, $Log(L/L_-)=2$, pre-He burning

Helium burning

 $M=3 M_-$, $Log(L/L_-)=2$, He burning

Pre-Helium

Helium burning

Numerical improvements

Damping rate
$$\eta = \frac{\int_0^M \operatorname{Im}(rac{\delta
ho *}{
ho} rac{\delta \mathrm{P}}{
ho}) \, \mathrm{dm}}{2\sigma \, \int_0^M |\, \xi_r + \ell(\ell+1) \xi_h\,|^2 \, \, dm}$$

nptotic treatment

$$rac{K^2 \left[\ell(\ell+1)
ight]^{3/2}}{2\sigma^2} \int_0^{r_0} \left(rac{
abla_{
m ad}}{
abla} - 1
ight) rac{
abla_{
m ad} \, N \, g \, L}{P \, r^5} \, \mathrm{d}r$$

$$K^2 4\pi \sqrt{\ell(\ell+1)} \int_0^{r_0} N/r \, dr$$

Model at the bottom of red giant branch

Model at the bottom of red giant branch

 $M=2 M_-$, $Log(L/L_-)=1.32$, pre-He burning

nfunctions with many nodes in the g-mode cavity

$$P_{n,\ell} \approx \frac{2\pi^2(n_g + 1/2)}{\sqrt{\ell(\ell+1)}} \frac{1}{\int_{r_a}^{r_b} N dr}$$

Huge!

Solar-type modes: $n_g \sim 100 - 1000 \parallel l$ in the g-cavity

Trapping and radiative damping

nertia: depends on λ and mode trapping

Life-time =
$$\frac{\int_0^M |\xi_r + \ell(\ell+1)\xi_h|^2 dm}{\int_0^M \operatorname{Im}(\frac{\delta\rho*}{\rho} \frac{\delta P}{\rho}) dm}$$

 $\begin{array}{c} \text{velope}: \textit{Convective damping} \\ \text{independent of } \lambda \end{array}$

re: Radiative damping

Radiative damping

Life-time ~

$$4\pi\,\int_0^{r_0} N/r\,\mathrm{d}r$$

$$rac{1}{r} \int_0^{r_0} \left(rac{
abla_{
m ad}}{
abla} - 1
ight) rac{
abla_{
m ad} \, N \, g \, L}{P \, r^5} \; \mathrm{d}r$$

radiative damping: Life-time depends on λ

Mode trapping

See also Dziembowski et al. (2001) Christensen-Dalsgaard (2004)

Intermediate model in the red giant branch

Intermediate model in the red giant branch

tigh luminosity model in the red giant branch

Model at the bottom of red giant branch

low red giants differ from the Sun?

Sun

Pure acoustic modes,

(radial component of displacement dominates everywhere)

Mode lifetimes do not depend on λ

(for small λ)

tigh luminosity model in the red giant branch

A: Model at the bottom of red giant branch

A: Model at the bottom of red giant branch

A: Model at the bottom of red giant branch

High luminosity model in the red giant branch

High luminosity model in the red giant branch

Very dense spectrum of non-radial modes!!

Pre-Helium burning Red Giant

$$\lambda = O$$