Exoplanet search

... with CoRoT
The exoplanet « channel »

Secondary targets $m_v < 9$

Primary target $m_v \leq 6$

Exo Field $11 < m_v < 16$

Field: $3.05^\circ \times 2.8^\circ$ - 1 pixel = 2.32"

Data
- Analyzed: ~45,000 LCs
- Processed: ~33,000 LCs
- Observed: ~12,000 stars

~ 6000 targets/CCD
A two speed data analysis

Early analysis of the data (« alarm » mode)
- On nearly raw data (N1 level)
- During the run of the observation
- Using automated procedures

Detailed analysis (regular mode)
- On completely reduced data (N2)
- At ~mid run and at the end of run
- Performed by 8 different teams
On board change in the rate of the observations

- **Goal:**
 - A better coverage of the transit profile (TTVs, etc..)
 - To reduce the noise level
 - To trigger Follow up operations as soon as possible

- **Capacity:**
 - Sampling rate: 1/512s → 1/32s
 - Possible only for 1000 windows

- **Management of the target lists:**
 - Initial list: the best targets, ..known to host planets
 - Update: after early detection in quickly reduced data
The regular mode

Use fully processed data (up to 8 teams on the bridge)

- **Pre-processing**
 - Removal of outliers
 - Identifying hot pixels
 - Filtering star variability
 (median or NL filters, etc ..)
 - Studying systematics

- **Detection**
 - Standard methods: Bayesian, Box fitting LS
 - Others: based on correlation, wavelets, ...

→ Folded light curves

![Graphs showing frequency and phase](image)

(after Mazeh et al.)

![Correlation map](image)

(After Borde et al)
Example of detected signals

Many binaries →
Possible blends

- **Eclipsing binary**
 Secondary transit diluted in the noise

- **Background impostors**
 - B. Eclipsing Binaries
 - Eclipse (star or planet) diluted by a third star
 - Neighbourhood

→ Follow up confirmation mandatory
The wheat and the chaff (2)

Low mass stellar binary
DF/F = 1.6% ; D = 6.8h ; P = 15 days

Confirmed planet Exo_3b
DF/F = 0.45% ; D = 3.5 h ; P=4.26 d ; mv = 13.3

Background Eclipsing binary
DF/F = 0.15% ; D= 2.8 h ; P= 3.5 d ; mv = 15.7

Massive Be star
DF/F = 1.3% ; D= 8.7 h ; P= 30 d ; mv = 13.56
Detection/confirmation

- Detection
 - Made by different teams
 - Merging of the results
- Case by case analysis
 - Remove binaries
 - Compare depth/duration
 - Out of transit modulations
 - Look at colours
- Sorting by priorities
- Follow up confirmation
 - On/off photometry
 - Radial velocities

From light curves to planets
Organization of the work

Different working groups:

- Data reduction N1→N2
- Light-curve analysis (8 different teams)
 * Detrending/Detection
 * Sorting of candidates
- Follow-up operations
 * On/Off Photometry
 * Radial Velocities
 * Stellar Parameters
 * Space observations

- Light curve fitting and modeling

→ Coordination of detection & follow-up

Goal: to start the follow up obs. as soon as possible
Tools for the Follow up

- On/Off photometry
 - IAC 80cm
 - ESO VLT FORS & NTT/SUSI2
 - EULER La Silla
 - OHP 120cm
 - CFHT 3.6m
 - Wise obs. 1m

- Radial velocities
 - CORALIE
 - SOPHIE at OHP
 - HARPS

- Star parameters
 - High res. Spectros.

- Space facilities
CoRoT Exo. Science Team

Composition of the Team (core program)

- CoRoT Exoplanet Co-Is: 26
 - France (IAS, LAM, LESIA, LUTH, OCA)
 - Austria (SRI)
 - Belgium, Brasil
 - ESA (ESTEC)
 - Germany (DLR, Köln Univ., Tautenburg Obs.)
 - Spain (IAC)
 - Switzerland (Geneva obs.) - UK (univ. Exeter)

- Associated Scientists: ~ 20

→ Work as a single coherent group
What is found in the analyzed light curves

Present sample: 45,222 light curves

* Anticenter (IRa01, LRa01, SRc01) : 26,759
* Center (LRc01, SRc01) : 18,463
Only 1168 light curves contain transit like signals

- All kind of signals
 - Eclipsing binaries
 - Transiting planets
 - Others …

- Peak at short periods
 - Due to piling up on the line of sight
 - Some A/C differences (cut off in the piling up !?)
The fainter the star, the higher the detection limit.

Transit like signals (2)

- **anticenter**: IRa01, LRa01, SRa01 → 684 detections
- **center**: LRc01, SRc01 → 484 detections

![Graph showing depth percentage vs. magnitude (m_R) with points indicating detections.](image)
Transit like signals (3)

Many short periods on the faint stars

Faint stars are the most numerous

- **anticenter**
 - IRa01, LRa01, SRa01
 - \rightarrow 684 detections

- **center**
 - LRc01, SRc01
 - \rightarrow 484 detections
Transit like signals (4)

Short period planets are easier to detect

- anticenter
 - IRa01, LRa01, SRa01
- center
 - LRc01, SRc01
from 1168 detected signals only 374 consistent with planetary transits

- **Anticenter** → 294 candidates
 - Exo-1b
 - Exo-4b
 - Exo-5b
 - Exo-7b

- **Center** → 93 candidates
 - Exo-2b
 - Exo-3b
 - Exo-6b
 -
 - # Exo-nb
Planet candidates (2)

Period (h) vs. $P^{1/3}$

- Exo-1b
- Exo-2b
- Exo-3b
- Exo-4b
- Exo-5b
- Exo-6b
- Exo-7b
- # Exo-nb

Legend:
- Blue dots: anticenter
- Green dots: center
Test of the detection capacity

and test with simulated transits (different teams were involved)

From the data
- anticenter
- center

From the blind test
- Injected transits
- Detected transits (by at least 1 team)

Participation:
- P. Borde
- J. Cabrera
- L. Carone
- S. Carpano
- C. Regulo
Results for the first 5 runs

<table>
<thead>
<tr>
<th>Run</th>
<th>Stars</th>
<th>Transit signals</th>
<th>Discussed</th>
<th>candidates</th>
<th>F. Up</th>
<th>Planets</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRa01</td>
<td>9921</td>
<td>230</td>
<td>~90</td>
<td>51</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>SRc01</td>
<td>7015</td>
<td>256</td>
<td>~90</td>
<td>57</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>LRc01</td>
<td>11448</td>
<td>228</td>
<td>~50</td>
<td>50</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>LRa01</td>
<td>11448</td>
<td>299</td>
<td>~90</td>
<td>45</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>SRa01</td>
<td>5390</td>
<td>155</td>
<td>34</td>
<td>14</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>45,222</td>
<td>1168</td>
<td>~354</td>
<td>217</td>
<td>208</td>
<td>6</td>
</tr>
</tbody>
</table>

2.5% of the targets have transit like signals from which: ~70% are eclipsing binaries and 30% planet candidates

6 confirmed planets (5 completely characterized)
Final comments (1)

Up to now CoRoT has detected:
- Six giants planets (see talk by H. Rauer)
- One small planet (see talk by D. Rouan)

But particularly interesting objects!

We expect more planets:
- With the next runs of observations
- When data will be reprocessed with the new pipeline version
- Thanks to our experience of the first runs

Theoretical interpretation are just beginning:
- Structure and composition of CoRoT’s planets (talks by T. Guillot, J. Laskar, D. Vidal, J. Laskar, etc.)
What we learned from the first runs:

- From the initial run (talks by S. Carpano & C. Moutou)
- Studying the detection limits (talks by Pont & Samuel)
- Using the color information (talk by P. Borde)
- From the photometric Follow up (talks by Deeg & Gillon)
- From the radial velocity Follow up (talk by F. Bouchy)
- From the study of stars (talks by M. Deleuil, D. Gandolfi & M. Barbieri)
- Studying the noise level (talks by M. Auvergne, M. Olivier, S. Aigrain, D. Fialho, T. Mazeh)