

Frequency analysis of the sismo-field γ -Doradus star : HD49434

M.-P. Bougbid

E. Chapellier, E. Rodriguez, P. Mathias & the γ -Doradus thematic team

HD49434 stellar parameters

- F-type γ -Doradus pulsator with solar metallicity
- fast rotator (v.sin $i = 84 \pm 5 \text{ km.s}^{-1}$)

HD49434 stellar parameters

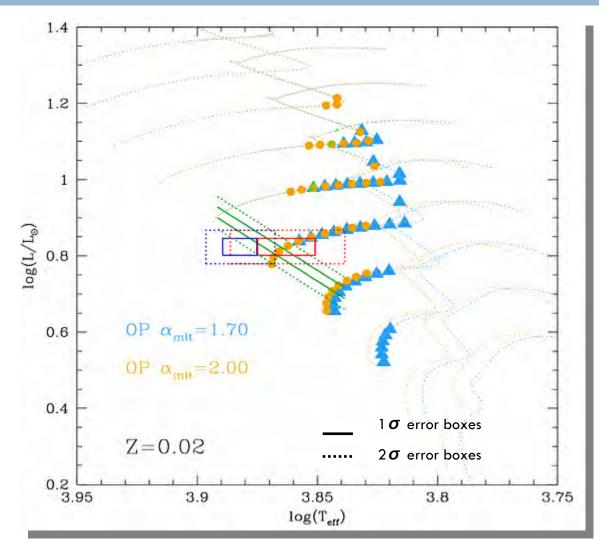
- F-type γ -Doradus pulsator with solar metallicity
- fast rotator (v.sin $i = 84 \pm 5 \text{ km.s}^{-1}$)

from Masana et al. (2006)

$$\square R = 1.601 \pm 0.052 R_{\odot}$$

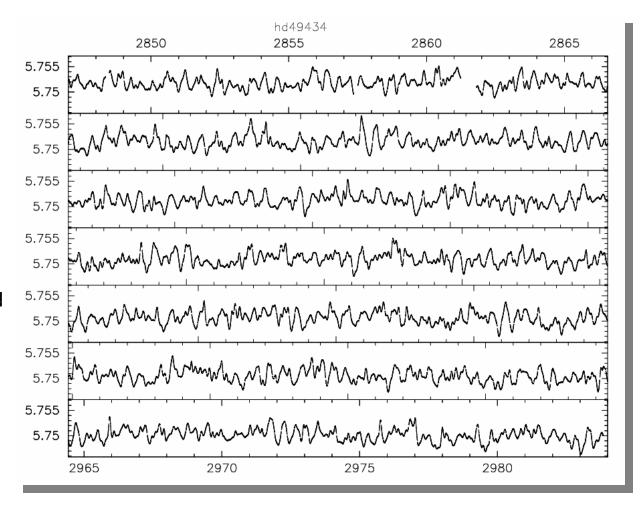
□2 analysis:

from Bruntt et al. (2004)

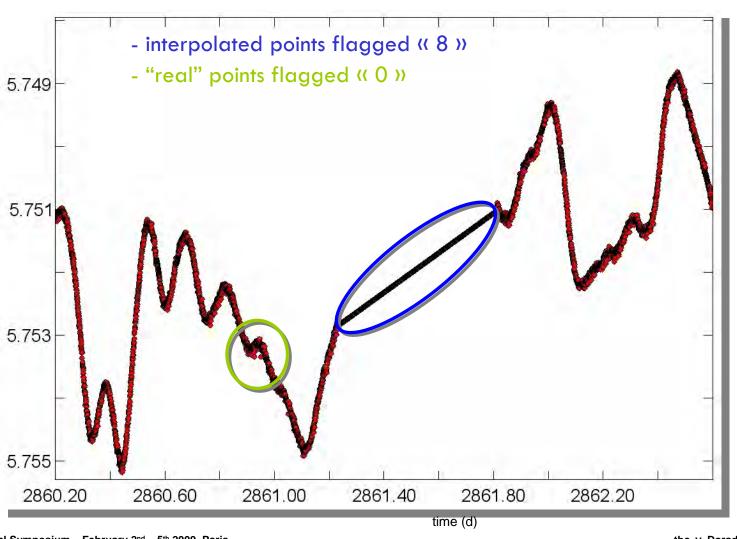

$$_{\rm eff} = 7300 \pm 200 \, {\rm K}$$

$$logg = 4.1 \pm 0.2$$
 dex

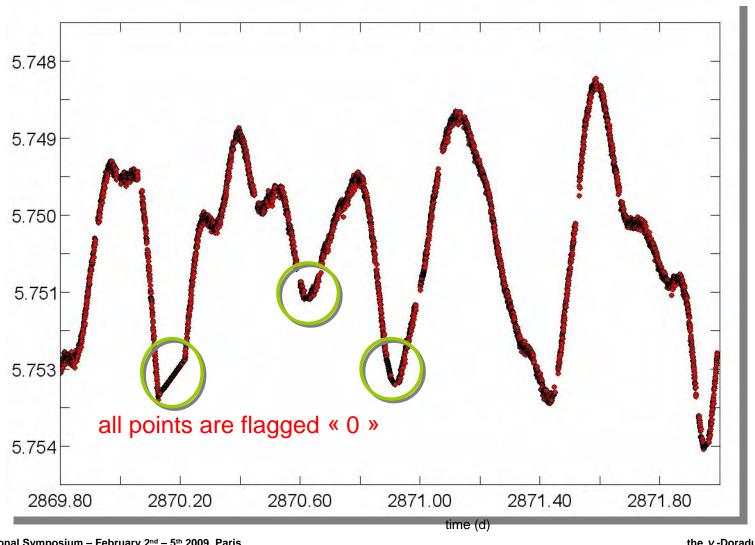
from Gillon & Magain (2006)

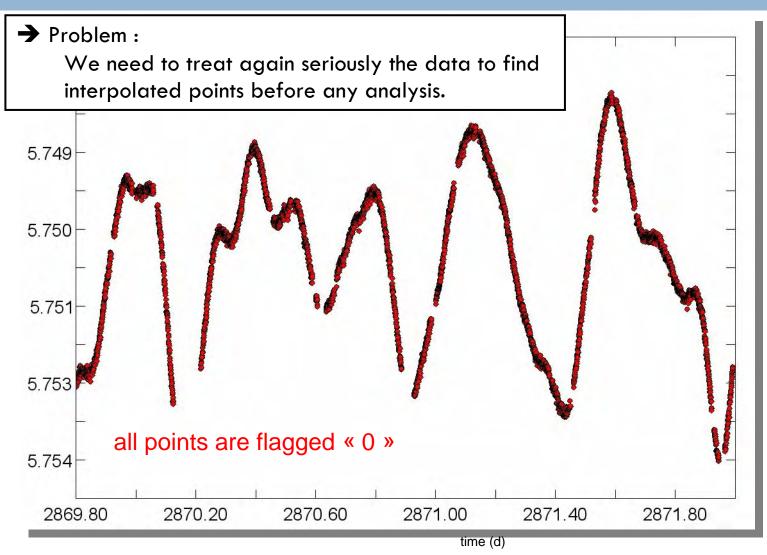

$$_{\rm eff} = 7632 \pm 126 \, {\rm K}$$

$$\log g = 4.43 \pm 0.20$$
 dex



HD49434 in the Corot field


- □ Primary target of LRa1long run (October 2007→ March 2008)
- Very complex light curve
- \triangle T = 136.9 days
 - → 1 point every 32 s.
 - → 369630 points expected
 - After cleanings:
 "only" 325714 usable points!


Problem with points flagged ((0))

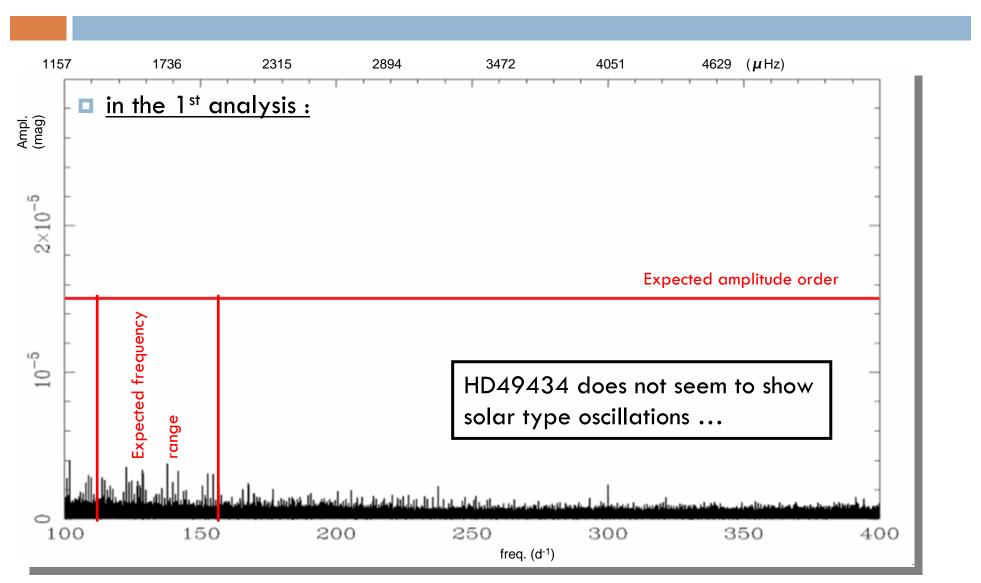
Problem with points flagged ((0))

Problem with points flagged ((0))

First frequency analysis – E. Rodriguez

- Analysis of the light curve with the interpolated points flagged « 0 » by E. Rodriguez
- Automatic analysis using SigSpec
- Range below 30 d⁻¹ (347 μ Hz): Region of interest for γ -Doradus and δ -Scuti type oscillations
 - Using Breger criterion
 - 1686 "formally" significant peaks found (peaks over a S/N ratio of 4.0)
- □ Range larger than 30 d⁻¹ (347 μ Hz):

All the most "significant peaks" due to the satellite orbital frequency and its interaction with the frequency f_1 =0.01104 d^{-1} (0.1278 μ Hz) due to the Corot trend.

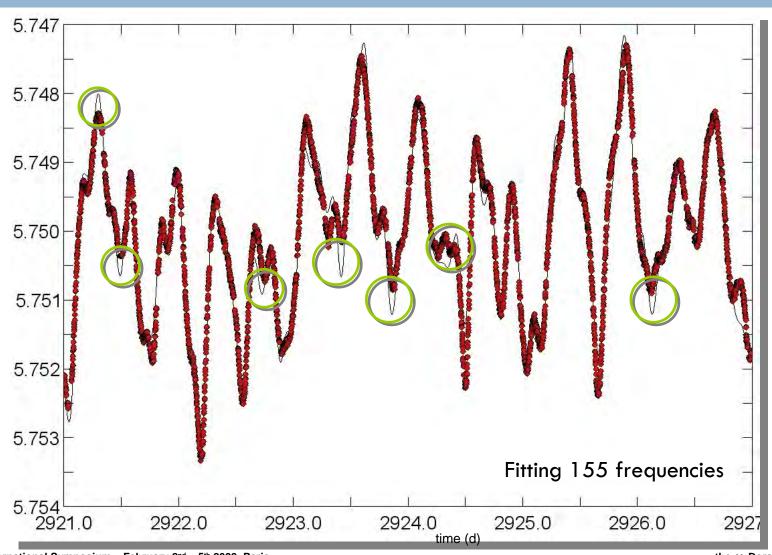

Research of solar type oscillations

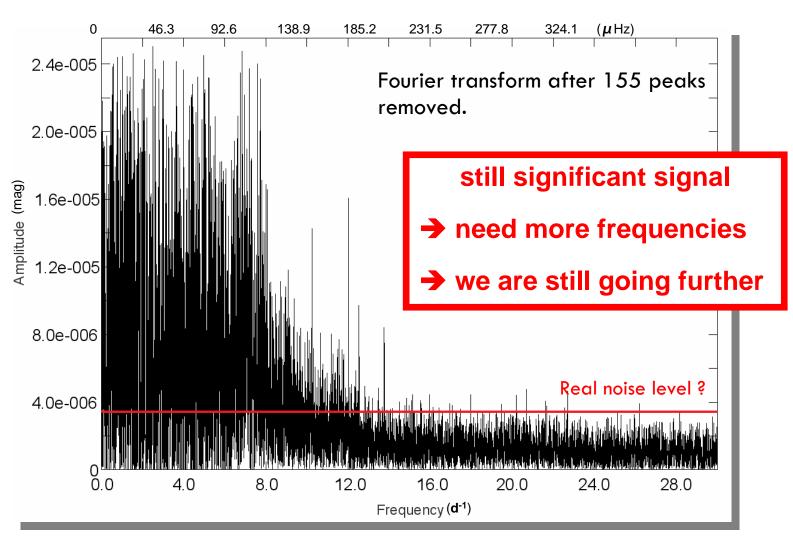
assuming:

■
$$T_{eff} = 7300 \text{ K}$$

■ $R = 1.601 \text{ R}_{\odot}$
■ $M = 1.5 \text{ M}_{\odot}$

Using the Kjeldsen & Bedding method (1995) we expect a maximum for the solar type oscillations near 137 d⁻¹ (1590 μ Hz) with an amplitude of the range of 15.5 μ mag.


Research of solar type oscillations


Second frequency analysis - Nice team

- Analysis of the light curve without the interpolated points flagged « 0 » by E. Chapellier
 & M.-P. Bouabid
- Manual analysis using Period04
- Cleaned and averaged light curve
 - → Average on 3 points :
 - decrease the noise level
 - decrease the computation time
- \square Analysis from 0 to 30 d⁻¹ (347 μ Hz)
- □ 155 frequencies found and still in progress

Second frequency analysis - Nice team

Second frequency analysis - Nice team

Comparison with the ground-based data

see poster n° 60 (Uytterhoeven et al.)

	Freq.	Freq.	Freq.	< <i>\nu</i> >	$<\nu^{-2}>$	$<\nu^{-3}>$	LPV	Ground based	mode	Rodriguez	Chapellier
	name	(d ⁻¹)	(μ Hz)					photometry	$\text{degree } (l \in \tt)$	analysis	analysis
	f ₁	0.23427(5)	2.711	X				X			
	f ₂	1.2732(8)	14.74	X	X	X			[5,7]	•••	
y -Dor	f ₃	1.4831(8)	17.17	X	X		X		[4,6]	F ₂₉	F 30
7	f ₄	1.73480(3)	20.08					X		F ₁	F ₂
	f ₅	2.253	26.08					suspected	•••	F ₄	F 5
	f ₆	2.538	29.38					suspected	•••	F ₂	F 4
	f ₇	2.666(2)	30.86	X					•••	F ₁₁₁	F ₁₁₅
	f ₈	5.3311(3)	61.70				X		[6,8]	F ₃₆₉	
255	f ₉	5.583(1)	64.62	X	X	•••			•••	F ₆₅	F ₆₉
δ-Sct	f ₁₀	9.3070(3)	107.7			X	X		[4,6]	F 68	F ₇₂
	f ₁₁	6.6841/7.6841	77.36/88.94				X		[3,5]	F ₁₅	F ₁₆
	f ₁₂	10.1527/9.1527	117.5/105.9				X		[6,8]	•••	•••
	f ₁₃	12.0332/11.0332	139.3/127.7				Х		[6,8]	F ₃₂₀	•••

Comparison with the ground-based data

see poster n° 60 (Uytterhoeven et al.)

Freq.	Freq.	Freq.	< \nu >	$<\nu^{-2}>$	$< \nu^{-3} >$	LPV	Ground based	mode	Rodriguez	Chapellier
name	(d ⁻¹)	(μ Hz)					photometry	$degree\ (l\in\)$	analysis	analysis
f ₁	0.23427(5)	2.711	X				X		F 3 & F 5	F 3 & F 7
f ₂	1.2732(8)	14.74	X	X	X			[5,7]	•••	
f ₃	1.4831(8)	17.17	X	X		X		[4,6]	F ₂₉	F 30
f ₄	1.73480(3)	20.08	Со	mbina	tion of	2 fre		F ₁	F ₂	
f ₅	2.253	26.08		ar 0.22				F ₄	F 5	
f ₆	2.538	29.38						F ₂	F ₄	
f ₇	2.666(2)	30.86	X		•••			•••	F ₁₁₁	F ₁₁₅
f ₈	5.3311(3)	61.70			•••	X		[6,8]	F ₃₆₉	•••
f ₉	5.583(1)	64.62	X	X				•••	F ₆₅	F ₆₉
f 10	9.3070(3)	107.7			X	X		[4,6]	F ₆₈	F ₇₂
f ₁₁	6.6841/7.6841	77.36/88.94				X		[3,5]	F ₁₅	F ₁₆
f ₁₂	10.1527/9.1527	117.5/105.9			•••	X		[6,8]	•••	•••
f ₁₃	12.0332/11.0332	139.3/127.7				X		[6,8]	F ₃₂₀	•••

Comparison with the ground-based data

see poster n° 60 (Uytterhoeven et al.)

Freq.	Freq.	Freq.	< \nu >	$<\nu^{-2}>$	$<\nu^{-3}>$	LPV	Ground based	mode	Rodriguez	Chapellier
name	(d ⁻¹)	(μ Hz)					photometry	degree $(1 \in)$	analysis	analysis
f ₁	0.23427(5)	2.711	X				X		F 3 & F 5	F 3 & F 7
f ₂	1.2732(8)	14.74	X	X	X			[5,7]		•••
f ₃	1.4831(8)	17.17	X	X		X		[4,6]	(F 29	F 30
f ₄	1.73480(3)	20.08					X	•••	F ₁	F ₂
f ₅	2.253	26.08					suspected	•••	F ₄	F 5
f ₆	2.538	29.38					suspected		F ₂	F 4
f ₇	2.666(2)	30.86	X					•••	F 111	F ₁₁₅
f ₈	5.3311(3)	61.70				X		[6,8]	(F ₃₆₉)	
f ₉	5.583(1)	64.62	X	X				•••	F 65	F 69
f 10	9.3070(3)	107.7			X	X		[4,6]	(F 68	F 72
f ₁₁	6.6841/7.6841	77.36/88.94				X		[3,5]	F 15	F 16
f ₁₂	10.1527/9.1527	117.5/105.9		•••	•••	X		[6,8]		
f ₁₃	12.0332/11.0332	139.3/127.7				Х		[6,8]	F 320	

Summary

- Need to make our own estimation of HD49434 effective temperature
- □ Need hundreds frequencies to fit the light curve → Go further in the second analysis
 → See which frequencies are real
- This star does not seem to show solar oscillations
- Find again the approved and suspected ground-based frequencies (except two)

We can see high degree modes with Corot!

Future prospects for the γ -Doradus thematic team

- $^{\square}$ 2nd sismo-field γ -Doradus star HD171834 (LRc2 long run) : ground-based and Corot data analysis
- Analysis of exo-field γ -Doradus light curves
 - → see poster n° 44 (Mathias & al.)
- \square Modelling of the γ -Doradus targets with the « BAG grid of models for γ -Doradus stars »
 - → see poster n° 45 (Miglio et al.)

Appendix 1: Method for solar type oscillations prediction

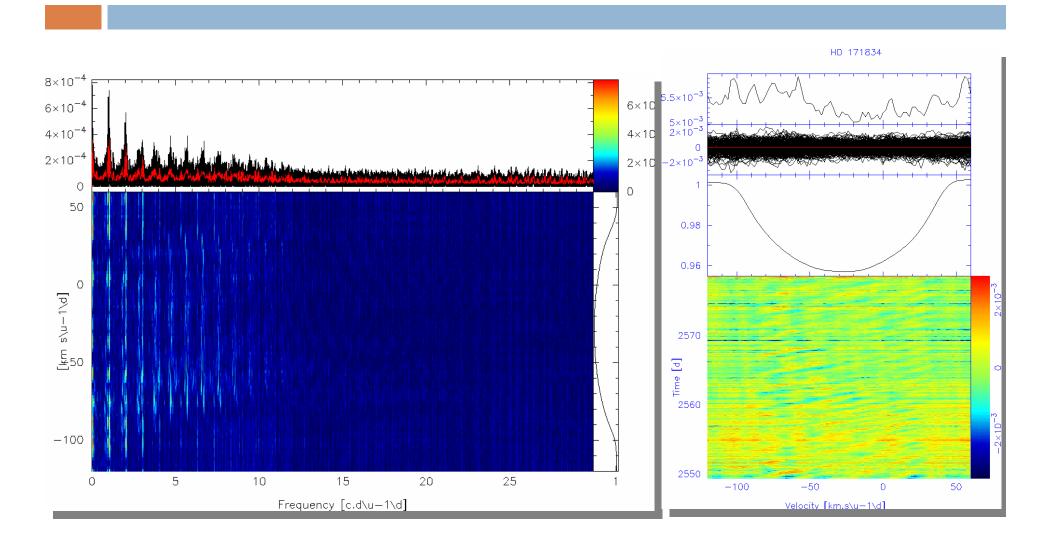
From Kjeldsen & Bedding 1995 (A&A 297, 87):

Assuming
$$V_{osc} = \frac{L * M_o}{L_o * M} * (0.234 \pm 0.014) \text{ m.s}^{-1}$$

with
$$L = 4.\pi R^2.\sigma.T^4$$

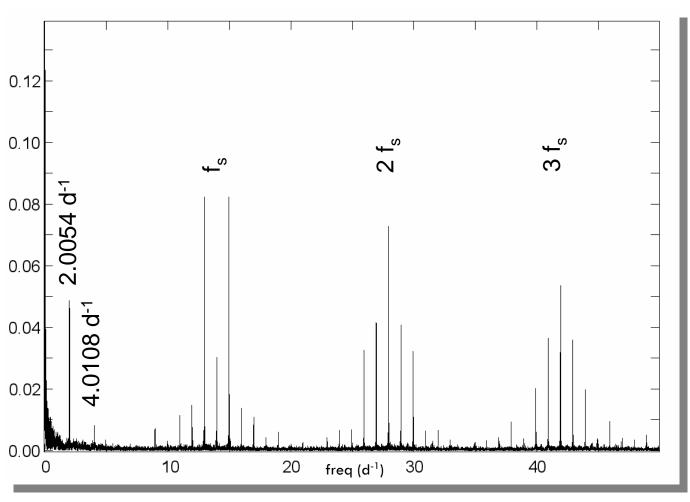
We have :
$$\left(\frac{\delta L}{L}\right)_{bol} = \frac{R^2 * T_{eff}^3 * 0.234}{R_o^2 * T_o^3 * \frac{M}{M_o}} * 17.7 * 1.086 \ \mu mag$$

and
$$v_{max} = \frac{M/M_o}{\left(R/R_o\right)^2 * \sqrt{\frac{T_{eff}}{T_o}}} * 3050 \ \mu Hz$$
 for solar type oscillations

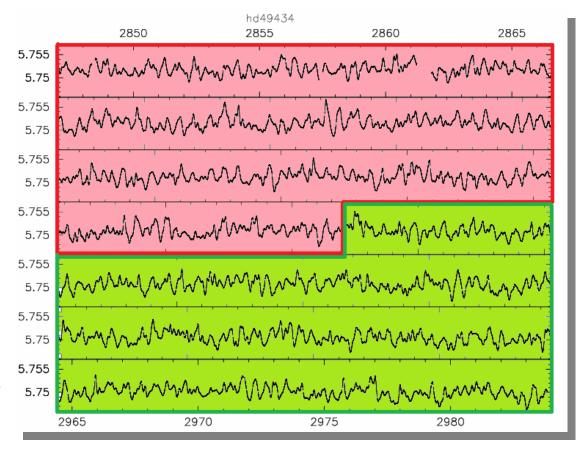

Appendix 2: SigSpec applied to the ground-based data

Freq.	Freq.	Freq.	u	b	V	У	Rodriguez	Chapellier	Remarks
name	(d^{-1})	(μHz)					analysis	analysis	
f_1	0.23427(5)		X	X	X	X	F_3 and F_5	$F_3 \& F_7$	
$\mathrm{f_4}$	1.73480(3)		X	\mathbf{X}	\mathbf{X}	\mathbf{X}	${ m F}_1$	F_2	
f_5	2.253		X	\mathbf{X}	\mathbf{X}	\mathbf{X}	F_4	F_5	
f_6	2.538			\mathbf{X}	\mathbf{X}	\mathbf{X}	F_2	${ m F}_4$	
f_{14}	2.4747		X	\mathbf{X}	\mathbf{X}	\mathbf{X}	not found	not found	$ m f_3 + 1~cd^{-1}$
f_{15}	2.38		X	X	\mathbf{X}	\mathbf{X}	F_{9}	F_{10}	
f_{16}	1.5442					X	F_8	F_9	

Appendix 3: Comparison of the two analysis


- All the 155 peaks of the second analysis are included in the 200 first peaks of the first analysis with:
 - Near the same detection order from the 1st to the 30th frequency
 - lacktriangle Detection order at \pm 10 from the 30th to the 100th frequency
 - lacktriangle Detection order at \pm 20 from the 100th to the 130th frequency
 - \blacksquare Detection order at \pm 50 from the 130th to the 155th frequency

Appendix 4: HD171834 is a variable star

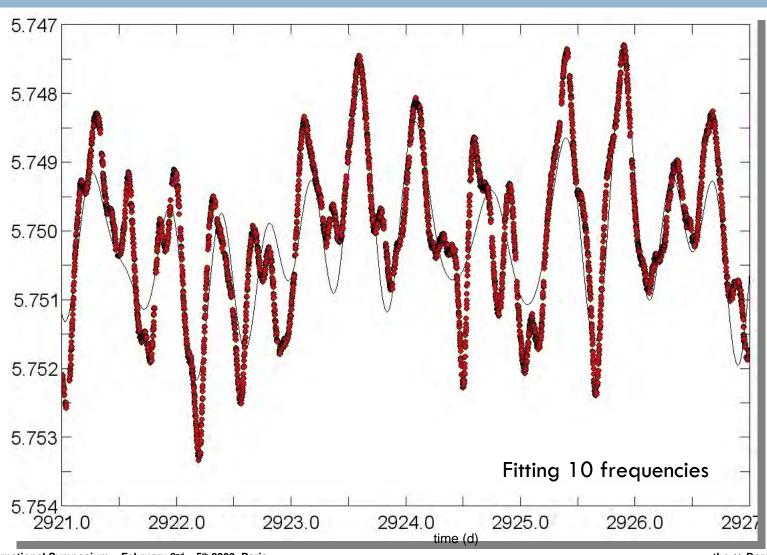

Appendix 5: Frequency analysis

Spectral window

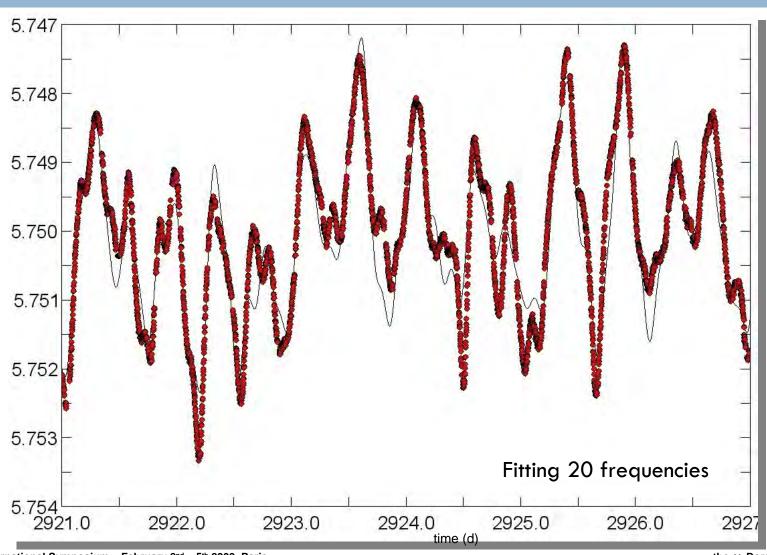
Appendix 6a: Are all peaks « real peaks » ?

- Are all the peaks true peaks ?(not due to the analysis)
- → Using different methods on the whole data (W) (See second analysis)
- Are all true peaks real peaks?(intrinsic of the star)
 - Comparing 2 subsets
 - subset S1 from day 0 to day70 (166089 points)
 - subset S2 from day 70 to day 136,9 (165202 points)

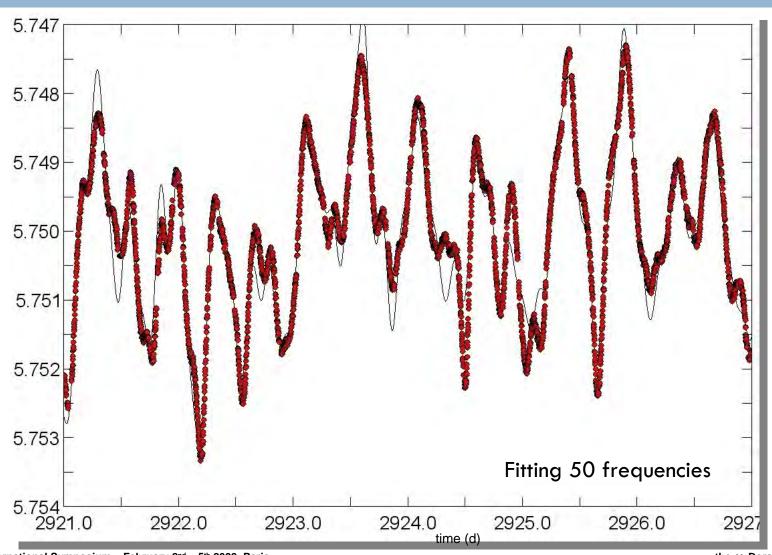
Appendix 6b: Are all peaks ((real peaks)) ?

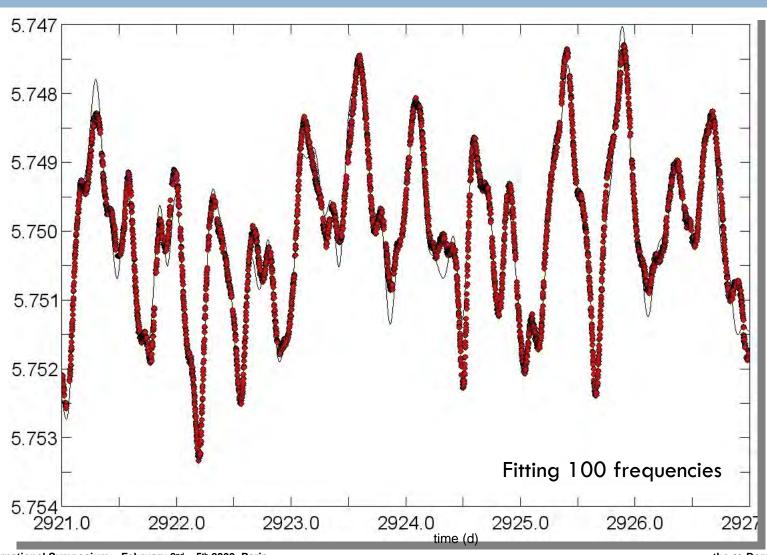

- 3 coincidence criterions :
 - on the frequency range
 - on the amplitude
 - on the number of the frequency in the list
- Caution with the criterion on the amplitudes :
 - → Possibility of energetical interaction between modes during "short" time scales
 - \rightarrow Can induce amplitudes variations from a subset to another.
- S1 versus S2:

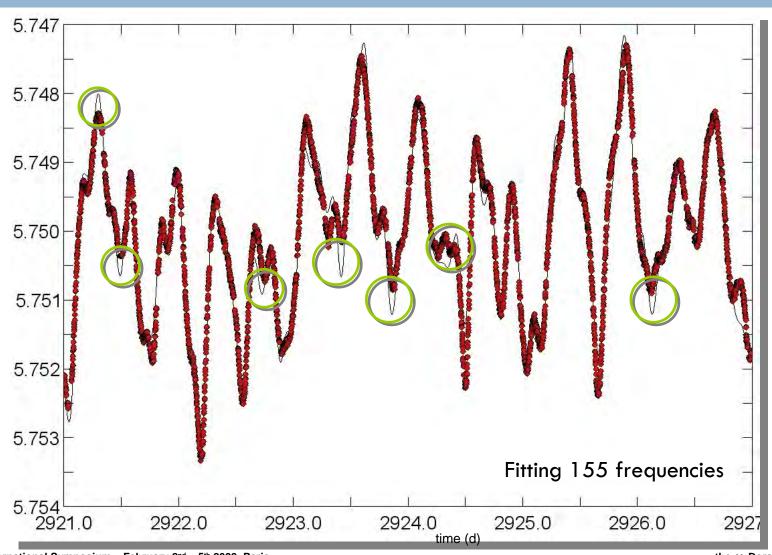
Range	Real	Probable	300
(d^{-1})			
0.005	183	334	146
0.01	281	522	207
		_	


S1 and S2 versus W:

Range	Real	Probable	300
(d^{-1})			
0.005	219	646	231
0.005	211	600	223
0.01	301	854	276
0.01	280	769	277
	(d ⁻¹) 0.005 0.005 0.01		(d-1) 0.005 219 646 0.005 211 600 0.01 301 854


Appendix 7a: Second frequency analysis


Appendix 7b: Second frequency analysis


Appendix 7c: Second frequency analysis

Appendix 7d: Second frequency analysis

Appendix 7e: Second frequency analysis

